Домой / Эрозия / Комплексная диагностика методом риф. Серологические реакции с использованием метки

Комплексная диагностика методом риф. Серологические реакции с использованием метки

Открытая еще в 1942 году Кунсом, реакция иммунофлуоресценции не является новым методом исследования. Однако появление гибридомных технологий, которые позволили получить моноклональные антитела, дало «вторую жизнь» этой реакции, поскольку их использование позволило в несколько раз увеличить чувствительность данной реакции и ее специфичность.

И сегодня мы расскажем вам в подробностях про реакцию прямой и непрямой иммунофлуоресценции (РИФ) как метод диагностики Кунса для взрослых мужчин и женщин при беременности.

Что такое реакция иммунофлуоресценции

Представляя собой отличную возможность для быстрого получения точного диагноза, реакция иммунофлуоресценции позволяет определить наличие возбудителя заболевания в патологическом материале. Для этого применяется мазок из материала, который специальным образом обрабатывается с помощью меченого ФИТЦ (флюоресцеина изотиоцианатом), и изучается в качестве гетерогенного анализа.

Для получения результата применяется люминесцентного микроскопа, в его оптической системе находится набор светофильтров для обеспечения препарата сине-фиолетовым либо ультрафиолетовым светом, имеющий заданную длину волны. Данное условие позволяет флюорохром отсвечивать при заданном диапазоне. Исследователем оцениваются свойства свечения, его характер, размеры объектов и их взаиморасположение.

Кому ее назначают

Проведение реакции иммунофлуоресценции может назначаться при диагностике множества вирусных заболеваний. В частности, ее назначают при комплексном обследовании на выявление следующих факторов:

  • наличие в организме вируса ;
  • заражение сальмонеллой;
  • существование в организме определенных антигенов;
  • выявляется вероятность заражения организма хламидиями, микоплазмами и другими микроорганизмами, имеющими способность к возбуждения вирусных заболеваний человека;
  • диагностика вирусных болезней у животных.

Перечисленные показания позволяют использовать реакцию иммунофлуоресценции при выявлении в организме человека и животных вирусных заболевания различной природы.

Цели проведения

Поскольку данный метод диагностики имеет множество преимуществ, к которым следует отнести его высокую результативность, быстроту проведения и получения результата, а также отсутствие большого количества противопоказаний, с его помощью определяется наличие в организм вирусных инфекций. Поэтому назначать данный анализ могут как для постановки, так и для уточнения диагноза, на основании которого назначается схема лечения.

Проведение процедуры не вызывает неприятных ощущений, для нее необходимо получить материал для анализа, который берется из любой жидкости организма: слюны, мокроты, соскоб с поверхности слизистых оболочек. Также может для проведения анализа браться кровь. Частоту проведения реакции иммунофлуорсценции назначает лечащий врач, которому необходимо получить данные по динамике протекающих в организме процессов.

Поскольку вреда как для организма, так и для общего самочувствия человека данный анализ не несет, назначаться он может по необходимости.

Виды такой процедуры

Сегодня применяется несколько разновидностей данного анализа, каждый из которых имеет ряд специфических особенностей и позволяет получить максимально развернутую картину процессов, происходящих в организме.

К разновидностям реакции иммунофлуоресценции следует отнести:

  1. — один из наиболее бурно развивающихся видов диагностики, этот анализ дает возможность получения количественных данных без применения серийных разведений. Благодаря использованию полученных измерений оптической плотности жидкости получается точно определить уровень концентрации нужного компонента. Широкие возможности данного вида анализа используются при использовании для его осуществления моноклональных антител, что позволяет определить фазу инфекционного процесса, его остроту;
  2. ДНК-диагностика — данный метод основан на комплементарном связывании нуклеотидов, для чего могут использоваться такие жидкости, как слюна, кровь, ликвор, моча, мокрота, биоптаты, кровь. Данный метод наиболее эффективно позволяет выявить наличие в организме вирусов папилломы, однако многие современные тест-системы могут изредка давать ложноположительные и ложноотрицательные результаты. Причиной их может быть загрязнения проб жидкости для проведения анализа специфической ДНК, наличие которой может иметь гнездный или тотальный характер;
  3. иммунохромотография — специфика этого способа определения наличия в организме патологической среды и вирусов состоит в применении в ходе реакции меченых антител. Используется данный метод диагностики для выявления и степени активности процесса заражения стрептококками группы А, а также хламидиями следующих видов: Clamikit R Innotech International, Clearview TM Chlamydia фирмы Oxoid. Обладая максимально высокой чувствительностью, тест-системы, которые основаны на данной методике исследования. применяются обычно как ориентировочный тест.

Перечисленные разновидности имеют особенности проведения и специфические характеристики результатов, однако все они направлены на получение данных о наличии в организме патологических микроорганизмов и вирусов, а также о степени их размножения и активности.

Показания к проведению

Реакция иммунофлуоресценции может назначаться для выявления в организме любого вида патологической среды.

Хламидии, трихомонады, гонококки и , а также лямблии всех видов определяются при проведении данного вида диагностики. и , и другие болезни также требуют проведения РИФ. Назначение врача для ее осуществления обязательно.

Противопоказания для проведения

Поскольку для проведения данной реакции в качестве исследуемого материала требуется любой вид жидкости организма, взятие их обычно не составляет трудностей и противопоказаний для осуществления реакции иммунофлуоресценции не существует. Однако при беременности и у детей до 6 месяцев взятие материала для исследования проводится с максимальными предосторожностями.

Отсутствие противопоказаний позволяет осуществлять проведение данного вида диагностики при назначении врача всем пациентам. Безопасность ее гарантируется использованием дезинфицированным инструментом и одноразовыми шприцами.

Подготовка к процедуре

Особенностей взятия материала для проведения данного анализа не существует. Кровь для него берется натощак, чтобы не было повышенного содержания в ней веществ, которые может изменить истинные показания и дать ложную картину.

Как проходит забор анализов

Поскольку особой подготовки для проведения анализа не требуется, исключается только прием пищи за 12 часов до ее проведения и отсутствие применения лекарственных препаратов, выполняется взятие исследуемого материала как обычный процесс взятия жидкости организма на анализ.

Субъективные ощущения во время процедуры могут различаться в зависимости от чувствительности.

Расшифровка результатов

Применение современных тест-систем позволяет получать максимально точные результаты анализа. Для расшифровки результата применяются следующие данные:

  • степень интенсивности флюоресценции;
  • оттенок флюоресценции;
  • периферический характер процесса свечения объекта;
  • характеристики морфологии, расположения возбудителя во взятом мазке исследуемого материала и его размеры.

Во время исследования объектов, имеющих крупные размеры (например, гарденереллы, трихомонады, клетки, которые уже поражены вирусами), перечисленные выше критерии дают возможность получения максимально достоверных результатов. Однако элементарные тела микоплазмы и хламидий обладают размерами, лежащими на пределе разрешающих способностей люминесцентного микроскопа, что затруд

няет получение точного результата, поскольку периферическое свечение теряет часть своей интенсивности. Оставшиеся критерии уже недостаточны для точной идентификации исследуемых микроорганизмов. По этой причине особые требования предъявляются к специалистам, которые проводят данный вид исследования: уровень их квалификации должен быть достаточным для оперирования имеющимися данными.

По этой причине расшифровкой полученного анализа может заниматься только врач с соответствующим уровнем квалификации. Про цену на исследование методом РИФ читайте ниже.

Средняя стоимость

Цена проведения реакции иммунофлуоресценции зависит от места ее проведения и уровня медицинского учреждения,а также квалификации проводящего анализ специалиста. Сегодня стоимость колеблется от 1280 до 2 160 рублей.

Более подробно о иммунологических реакциях поведает видео ниже:

Предложена и разработана Кунсом (1942). При помощи меченных флуорохромом специфических иммуноглобулинов в испытуемом материале (мазки, тканевык среды) находят бактериальные, вирусные и др. антигенные субстанции. При соединении меченного антитела с микробным или др. антигеном образуется светящийся комплекс, просматриваемый в люминесцентном микроскопе.

Существует прямой и непрямой методы иммунофлуоресценции.

Прямой метод . Готовят из исследуемого материала мазок, на который наносят специфическую флуоресцирующую сыворотку, и после связывания антитела с антигеном излишек сыворотки отмывают, препарат просматривают в люминесцентном микроскопе.

Непрямой (двухступенчатый) метод. Приготовленный мазок сначала обрабатывают неокрашенной иммунной сывороткой к предполагаемому антигену. После связывания антигена с антителом на мазок наносят антивидовую флуоресцирующую сыворотку (антиглобулин) животного того вида, на которых получена неокрашенная иммунная сыворотка. В результате антивидовая флуоресцирующая сыворотка адсорбируется на комплексе антиген-антитело и комплекс в люминисцентном микроскопе светится салатно-зеленым светом (ФИТ) или красные (РСХ) – флуоресцеиниоизоционат и родаминасульфохлорид.

Существует непрямой метод с использованием антикомплементарной сыворотке.

В настоящее время все шире используется метод метки антител светорассеивающими ферментами (напр., пероксидаза хрена) – ИФА. Иммунные комплексы можно выявлять под обычным светопольным микроскопом.

3. Реакции антигена с сенсибилизированными лимфоцитами наз. клеточными. Наибольшее значение среди методов иммунодиагностики с использованием проявления клеточного иммунитета имеет аллергическая диагностика. Это диагностика инфекционных болезней с помощью реакций, выявляющих повышенную чувствительность клеток и тканей организма к специфическим инфекционным аллергенам. На введение аллергена (в кожу, под кожу, на слизистые оболочки) инфицированный организм отвечает аллергической реакцией, которая протекает как местное (гиперемия, отек, болезненность) или общее (угнетение, повышение температуры тела, учащение дыхания, нарушение сердечной деятельности) явление. В неинфицированном организме таких явлений при введении аллергена не наблюдают.

Практическая ценность аллергодиагностики заключается в высокой специфичности, в возможности прижизненной постановки диагноза, простоте выполнения, в способности выявлять больных при отсутствии клинических признаков.

Широко используются аллергические пробы при сапе, туберкулезе, бруцеллезе, паратуберкулезе, туляремии, эпизоотическом лимфангите, сибирской язве и др. При этом используют аллергены (вещества антигенной или гаптенной природы, обусловливающие аллергию). Аллергены выпускают корпускулярные (состоят из бактерий, находящихся во взвеси) и лизированные (экстракты бактериальных культур). Примеры:

    Маллеин – стерильный фильтрат убитой нагреванием бульонной культуры возбудителя сапа, применяется нанесением на слизистую глаза или введением п\к.

    ППД туберкулин для млекопитающих и ППД туберкулин для птиц, состоящие из лиофильно высушенных осажденных белков культурального фильтрата возбудителя туберкулеза бычьего и человеческого видов в первом случае. ППД туберкулин для птиц – аналог ППД туберкулина для млекопитающих, но готовится из штаммов возбудителя туберкулеза птиц. Применяют их в основном в\к.

    Бруцеллин ВИЭВ – опалесцирующая жидкость, содержащая специфические вещества, извлеченные из бруцелл, вводят п\к и в\к.

    Тулярин – представляющий взвесь туляремийных микробов на физиологическом растворе с добавлением 3% глицерина, выращенных на твердой питательной среде, убитых путем нагревания. Пробу с ним ставят как в\к, так и накожно (у людей).

    Антраксин (представляет продукт гидролиза вакцинного штамма противосибиреязвенной вакцины СТИ-1.

Используются и другие феномены клеточного иммунитета. Напр., реакция бласттрансформации лейкоцитов (РБТЛ) – переход малых лимфоцитов в бластные формы, способные к пролиферации и дальнейшей дифференцировке наз. бласттрансформацией и сопровождается морфологическими изменениями лимфоцитов. Бласты – крупные, округлой формы клетки имеют большое ядро, занимающее большую часть цитоплазмы. В ядре содержится несколько крупных базофильных ядрышек, цитоплазма бластов зернистая. РБТЛ изучают в культуре лимфоцитов in vitro под влиянием антигена, к которым лимфоциты сенсибилизированы, прямым подсчетом бластов в окрашенных препаратах под микроскопом.

Реакция торможения миграции макрофагов – заключается в том, что лимфоциты сенсибилизированного организма в присутствии специфичесского антигена в культуральной среде продуцируют лимфокин – фактор, угнетающий миграцию макрофагов.

И другие (прочитаете сами): феномен розеткообразования, бляшкообразования.

Репродукция виру сов

Способ размножения вирусов также отличается от деления, почкования, спорообразования или полового процесса, кото­рые имеют место у одноклеточных организмов, у клеток мно­гоклеточных организмов и у последних в целом. Репродукция, пли репликация, как обычно обозначают размножение виру­сов, происходит дизъюнктивно (последний термин ныне чаще подразумевается, чем употребляется). Формирование вирионов происходит либо путем само сборки (упаковка вирусной нук­леиновой кислоты в белковый капсид и образование таким путем нуклеокапсида), либо с участием клетки (некоторые липидсодержащие фаги микоплазм), либо обоими способами (оболочечные вирусы). Конечно, противопоставление митотического деления клетки и репликации не абсолютно, так как способы репликации генетического материала клетки и ДНК-содержащих вирусов принципиально не отличаются, а если учесть, что и синтез генетического материала у РНК-содержащих вирусов также осуществляется по матричному типу, то относительным является противопоставление митоза и репли­кации всех вирусов. И, тем не менее, различия в способах раз­множения клеток и вирусов настолько существенны, что име­ет смысл делить весь живой мир на вирусы и невирусы.

К вирусам не применимы и многие другие понятия, являю­щиеся «атрибутами» организмов, и, прежде всего такие фун­даментальные понятия, как «особь», «популяция», «вид».

Принято трактовать понятие «вирион» как вирусный инди­видуум, хотя вирион является лишь определенной стадией жиз­ни вируса, и как раз той стадией, на которой вирус не прояв­ляет жизнедеятельности. Поэтому было даже предложено име­новать эту стадию существования вируса вироспорой. Между тем существует несколько групп вирусов, у которых геном не только фрагментарен (это имеет место и у клеток эукариотов, геном которых дискретен и существует в виде суммы хро­мосом), но и разные его фрагменты разобщены и находятся в различных частицах. Вирус проявляет инфекционные свой­ства лишь при попадании полного набора разноименных час­тиц, число которых у вирусов растений 2-4, а у некоторых вирусов насекомых до 28. Что же представляет собой вирус­ный индивидуум в этих случаях, когда даже понятие «вирион» не может быть применено?

Переходя к анализу активной жизнедеятельности вируса, которая целиком сводится к его репродукции, мы обнаружива­ем, что место проникшего в клетку вириона занимают либо голая нуклеиновая кислота его (например, у вируса полиомие­лита), либо нуклеопротеидный комплекс (например, у вируса гриппа), либо более сложные субвирионные структуры (например, у реовируса). Затем происходит синтез дочерних молекул вирусного генома. У многих ДНК-содержащих вирусов этот процесс не только сходен с синтезом клеточной ДНК хромо­сом, но и обеспечивается в значительной степени, а иногда почти полностью клеточными ферментами. Причем это имеет место не только при образовании простых и мелких вирусов (паповавирусы, парвовирусы), но и при синтезе сложных виру­сов с большим геномом (герпесвирусы, иридовирусы), у кото­рых некоторая доля синтезов ДНК катализируется собствен­ными ферментами. Образующиеся при этом репликативные интермедиаты вряд ли могут быть охарактеризованы как ви­русные индивидуумы: это матрицы, на которых синтезируются многочисленные копии дочерних геномов вируса. У вирусов с геномом в виде однонитевой РНК они либо информационно бессмысленны, т. е. не кодируют соответствующие вирусспецифические белки (вирусы с позитивной полярностью генома), либо, напротив, содержат гены для вирусных белков, так как вирионная РНК не обладает кодирующими свойствами.

Наряду с продуктивным циклом некоторые ДНК-содержащие вирусы (умеренные фаги, паповавирусы, вирус гепатита В и др.) могут вступать в интегративное взаимодействие с клеточным геномом, ковалентно встраиваясь в него и, превращаясь в группу клеточных генов, которые передаются клеткам – потомкам (у эукариотов) по законам Менделеева. В этом состоянии интегрированный вирусный геном, обозначаемый как провирус, фактически является группой клеточных генов. Если в провирусе произойдет мутация, делающая невозможным "вырезание" вирусного генома из клеточного, такой дефектный провирус может навсегда стать составной частью генома. Многие данные позволяют заключить, что геномы про- и эукариотов имеют в своем составе интегрированные гены или геномы в прошлом самостоятельных вирусов.

Существует большая группа РНК-содержащих ретровирусов, у которых на матрице их генома синтезируется комплиментарная ДНК. Она в виде двунитевой ДНК интегриру­ется (ковалентно встраивается) в клеточный геном и в этом виде является матрицей для синтеза дочерних молекул вирионной РНК и мРНК для синтеза вирусных белков. В обоих случаях (интеграбельные ДНК-содержащие вирусы, ретро-вирусы) образующийся такими путями провирус становится, группой клеточных генов.

Эти факты и примеры наглядно иллюстрируют положение о неприменимости понятия индивидуума к вирусам.

Столь же неприменяемым к вирусам является и понятие популяции, так как внутриклеточная стадия репродукции, а тем более интеграционные процессы нацело лишают смысла трак­товку репродуцирующегося вируса как популяции. К этому следует добавить данные о дефектных интерферирующих ча­стицах, «сопровождающих» почти каждую вирусную инфек­цию. Эти частицы представляют собой вирионы с неполным геномом, поэтому они не способны к репродукции. Тем не ме­нее, они играют важную биологическую роль, обеспечивая персистенцию вирусов в инфицированных организмах или в куль­турах тканей. Таким образом, вирусная «популяция» чаше всего представляет собой суммы полноценных вирионов и де­фектных образований, т. е. фактически мертвого материала. Такого рода «популяции», состоящие из живых и мертвых осо­бей, невозможно даже представить в мире организмов. В не­которых случаях сумма дефектных частиц с дефектами в разных участках генома может обеспечить развитие вирусной инфекции (феномен множественной реактивации).

Естественно, в случае, если нет особей, нет популяции, трудно ввести понятие вида. Этот вывод будет подкреплен да­лее соображениями о происхождении и эволюции вирусов. И, тем не менее, эти понятия нашли применение в вирусологии. Мы говорим о разных реально существующих популяциях ви­русов на уровне как инфицированных организмов, так и по­пуляций хозяев вирусов, а современная международно-признанная классификация вирусов основана на выделении ви­дов, родов и даже семейств и применении биноминальной но­менклатуры, которая принята для всех остальных представи­телей органического мира. И это не чистые забавы, а теоре­тически обоснованные и практически полезные методические подходы. К объяснению этих парадоксов мы еще вернемся.

Если вирусы не организмы, то чем же тогда они являются? Для того чтобы ответить на этот вопрос, необходимо очертить круг биологических структур, которые можно обозначить как вирусы. Это легко, если речь идет об обычных, общепризнан­ных вирусах, например, о вирусах оспы или фаге MS2, не­смотря на то, что первый из них имеет геном - ДНК с моле­кулярной массой до 240·10 6 , а второй - РНК с молекулярной массой около 1,2·10 6 . Различия между этими вирусами, веро­ятно, не менее значимы, чем, скажем, между кишечной палоч­кой и слоном или хотя бы любой клеткой этого животного. Однако мир вирусов еще более богат, если не ограничивать их общепризнанными инфекционными вирусами.

К числу вирусов, несомненно, следует отнести и дефектные вирусы. Дефектными являются многие онкогенные ретровирусы, так как приобретение ими генов, кодирующих онкогены, часто сопровождается делениями остальных генов. В присут­ствии полноценных вирусов-помощников, обычно близких к дефектным биологически, дефектный вирус может либо реплицироваться (если он не имеет дефект гена полимеразы), либо использовать белки вируса-помощника (если он имеет дефек­ты генов внутренних или оболочечных белков). Возможно, ис­пользование и белков биологически отдаленных вирусов: если дефектный, по оболочечным белкам, ретровирус размножать в присутствии вируса везикулярного стоматита, то вирионы бу­дут иметь внешнюю оболочку последнего. Впрочем, для этого даже не надо, чтобы один из вирусов был дефектным: при сме­шанной инфекции многими вирусами образуются вирионы, ге­ном которых заключен в оболочки другого вируса.

С сателлитами «сближаются» плазмиды, или, как раньше их называли, эписомы, экстрахромосомные факторы наслед­ственности. Это относительно небольшие, обычно с молеку­лярной массой менее 10 7 , циркулярные, реже линейные, молекулы ДНК, которые часто обнаруживаются в бактериаль­ных клетках. Они выполняют разные функции соответственно имеющимся на них генам: токсины, убивающие насекомых; гены, обусловливающие опухолевые разрастания у растений; ферменты, разрушающие или модифицирующие антибиотики; фактор фертильности - фактически индуцирующий половой процесс у бактерий - обмен генами между хромосомами двух бактерий. У дрожжей обнаружены киллеры (двунитевая РНК), на которых «закодированы» токсины, убивающие дрожжевые клетки, не носящие в себе киллеров. От вирусов, в том числе дефектных, и сателлитов плазмиды имеют два главных отли­чия: их гены не кодируют синтез белков, в которые упакованы нуклеиновые кислоты, и репликация их обеспечивается клет­кой. Плазмиды обычно находятся в свободном виде в цито­плазме, но могут быть интегрированы в геном клетки-носите­ля, последняя может и освобождаться от них. Между плазмидами и обычными вирусами нет резких границ. Так, некоторые плазмиды явно являются производными фагов, утратив боль­шую часть их генов и сохранив лишь некоторые из них. Ряд вирусов, например, вирус папилломы коров, может длительно персистировать в виде плазмид - голых молекул ДНК. В виде плазмид с полным или частично делетированным геномом мо­гут персистировать вирусы герпеса. С развитием генной инженерии стали возможными искусственное получение плазмид из вирусной ДНК, встройка в плазмиды чужеродных генов и даже искусственное конструирование плазмид из фрагментов клеточной ДНК.

К вирусам примыкают вироиды - возбудители инфекцион­ных болезней растений. Они не имеют существенных отличии от обычных вирусных болезней, но вызываются своеобразными структурами - небольшими (молекулярная масса 120000- 160000) циркулярными суперспирализированными молекула­ми РНК. Во всем остальном это типичные вирусные болезни с определенными проявлениями, инфекционностью при меха­нической передаче, размножением вироидов в зараженных клетках.

Наконец, с вирусными инфекциями имеют сходство болез­ни животных (овцы, козы) и человека (болезнь куру, болезнь, Крейтцфельда - Якоба), выражающиеся в развитии спонги-формных энцефалопатий. Предполагают, что эти болезни являются результатами выхода из-под контроля генов, кодирую­щих белки, которые являются и их продуктами, и их деренрессорами, и причиной характерных поражений нервных клеток.

Возможность дегенеративной эволюции была неоднократно установлена и доказана, и, пожалуй, наиболее ярким примером ее может служить происхождение некоторых клеточных органелл эукариотов от симбиотических бактерий. В настоящее время на основании изучения гомологии нуклеиновых кислот можно считать установленным, что хлоропласты простейших и растений происходят от предков нынешних сине-зеленых бактерий, а митохондрии – от предков пурпурных бактерий. Обсуждается так же возможность происхождения центриолей от прокариотических симбионов. Поэтому такая возможность не исключена и для происхождения вирусов, особенно таких крупных, сложных и автономных, каким является вирус оспы.

Все же мир вирусов слишком разнообразен, чтобы при­знать возможность столь глубокой дегенеративной эволюции для большинства его представителей, от вирусов оспы, герпе­са и иридовирусов до аденосателлитов, от реовирусов до са­теллитов вируса некроза табака или РНК-содержащего дель­та-вируса - сателлита вируса гепатита В, не говоря уж о та­ких автономных генетических структурах, как плазмиды или вироиды. Разнообразие генетического материала у вирусов является одним из аргументов в пользу происхождения виру­сов от доклеточных форм. Действительно, генетический мате­риал вирусов «исчерпывает» все его возможные формы: одно- и двунитевые РНК и ДНК, их линейные, циркулярные и фраг­ментарные виды. Природа как - бы испробовала на вирусах все возможные варианты генетического материала, прежде чем окончательно остановила свой выбор на канонических его формах -двунитевой ДНК как хранителе генетической ин­формации и однонитевой РНК как ее передатчике. И все же разнообразие генетического материала у вирусов скорее сви­детельствует о полифилетическом происхождении вирусов, не­жели о сохранении предковых доклеточных форм, геном которых эволюционировал по маловероятному пути от РНК к ДНК, от однонитевых форм к двунитевым и т. п.

Третья гипотеза 20-30 лет казалась маловероятной и даже получила ироническое название гипотезы взбесившихся ге­нов. Однако накопленные факты дают все новые и новые аргу­менты в пользу этой гипотезы. Ряд этих фактов будет обсуж­ден в специальной части книги. Здесь же отметим, что именно эта гипотеза легко объясняет не только вполне очевидное полифилетическое происхождение вирусов, но и общность столь разнообразных структур, какими являются полноценные и де­фектные вирусы, сателлиты и плазмиды и даже прионы. Из этой концепции также вытекает, что образование вирусов не явилось единовременным событием, а происходило много­кратно и продолжает происходить в настоящее время. Уже в далёкие времена, когда начали формироваться клеточные фор­мы, наряду и вместе с ними сохранились и развивались не­клеточные формы, представленные вирусами - автономными, но клеточно-зависимыми генетическими структурами. Ныне существующие вирусы являются продуктами эволюции, как древнейших их предков, так и недавно возникших автономных генетических структур. Вероятно, хвостатые фаги служат при­мером первых, в то время как R-плазмиды - примером вторых.

Основным положением эволюционной теории Ч. Дарвина является признание борьбы за существование и естественного отбора как движущих сил эволюционного процесса. Открытия Г. Менделя и последующее развитие генетики дополнили ос­новные положения эволюционной теории учением о наслед­ственной изменчивости, имеющей случайный, стохастический, характер, в частности о мутациях и рекомбинациях, которые являются «материалом» для естественного отбора. Последую­щее развитие молекулярной генетики материализировало по­нятие гена и химических основ мутаций и рекомбинаций, включая точечные мутации, вставки, делеции, перестройку и т. п. Однако справедливо отмечалось, что молекулярная ге­нетика хорошо объясняла лишь процессы микроэволюции преимущественно в пределах мира и плохо объясняла про­цессы макроэволюции - образование крупных таксономичес­ких групп, являющихся основой прогрессивной эволюции.

Для объяснения молекулярных основ этих процессов, а так­же реальных темпов эволюции была предложена теория дупликации генов и геномов . Эта концепция со­ответствует наблюдаемым фактам и хорошо объясняет эво­люцию органического мира на Земле, в частности, появление позвоночных (хордовых) и их дальнейшую эволюцию от при­митивных бесчерепных до человека. Поэтому эта концепция быстро получила признание среди биологов, изучающих моле­кулярные основы эволюции.

Наряду с этим накопилось значительное число фактов, сви­детельствующих о существовании в природе в широких мас­штабах обмена готовыми блоками генетической информации, в том числе у представителей разных, эволюционно далеких вирусов. В результате такого обмена могут быстро и скачко­образно изменяться наследственные свойства путем встраива­ния чужеродных генов (заимствование генной функции). Но­вые генетические качества могут возникнуть также благода­ря неожиданному сочетанию собственных и интегрированных генов (возникновение новой функции). Наконец, простое уве­личение генома за счет неработающих генов открывает воз­можность эволюции последних (образование новых генов).

Особая роль в обеспечении этих процессов принадлежит вирусам - автономным генетическим структурам, включающим как конвенционные вирусы, так и плазмиды. Эта мысль была вы­сказана в общих чертах , а затем развита более подробно [Жданов В. М., Тихоненко Т. И., 1974].

Репродукция ДНК-вирусов. Репликативный цикл ДНК-содержащих вирусов. Репродукция паповавирусов. Репродукция аденовирусов.

Вирусы, лишённые суперкапсида (например, аденовирусы) проникают в клетки путём виропексиса, а имеющие таковой (покс- и герпесвирусы) - за счёт слияния суперкапсида с клеточной мембраной. Репродуктивный цикл ДНК-содержащих вирусов включает раннюю и позднюю стадии (рис. 5-4). У крупных ДНК-вирусов имеется явное несоответствие между кодирующе ёмкостью генома и молекулярной массой вирусиндуцированных белков и белков, входящих состав вирионов. Например, у герпесвирусов лишь 15% ДНК кодирует все белки вирионов и их предшественников. Возможно, значительная часть генома содержит гены, кодирующие синтез ферментов и регуляторных белков. Папова-, адено- и герпесвирусы репродуцируются относительно однотипно, в то время как репродукция поксвирусов имеет некоторые особенности.

Ранняя стадия репродукции . Вирусная ДНК проникает в ядро клетки, где транскрибируется клеточной ДНК-зависимой РНК-полимеразой. При этом считываетеся, а затем транслируется часть вирусного генома («paнние гены»). В результате синтезируются «ранние белки» (регуляторные и матричные белки вирусные полимеразы).

Регуляторные белки выполняют различные функции. При заражении клетки они блокируют синтез клеточных РНК, ДНК и белка и одновременно способствуют экспрессии вирусного генома, изменяя специфичность реагирования клеточных полимераз и полирибосом. Они так же запускают репликацию клеточной ДНК, модифицированной встроенными геномами ДНК содержащих вирусов и ретровирусов, то есть репликацию вирусных геномов. Вирусспецифические полимеразы. В репликацию вирусных геномов также вовлечены вирусоспецифические ДНК-полимеразы, участвующие в образовании молекул ДНК дочерних популяций.

Матричные белки необходимы для репликации нуклеиновых кислот и сборки дочерних популяций. Они образуют электронно-плотные скопления в клетке, известные как тельца включений (например, тельца Гварнери при натуральной оспе).

Поздняя стадия репродукции . На этом этапе происходит синтез нуклеиновых кислот вируса. Не вся вновь синтезированная вирусная ДНК упаковывается в вирионы дочерней популяции. Часть ДНК («поздние гены») используется для синтеза «поздних белков», необходимых для сборки вирионов. Их образование катализируют вирусные и модифицированные клеточные полимеразы.

Паповавирусы и аденовирусы. Репродукция паповавирусов. Репродукция аденовирусов.

Адсорбция , проникновение и депротеинизация аналогичны таковым у РНК-содержащих вирусов, но у папова - и аденовирусов депротеинизация протекает в ядре, а у РНК-вирусов - в цитоплазме.

Ранняя фаза репродукции . Вирусная ДНК («ранние гены») транскрибируется в ядре клетки. На одной из нитей ДНК реализуется транскрипция вирусной «ранней» мРНК. Механизмы транскрипции вирусной ДНК аналогичны считыванию информации с клеточной ДНК. Специфическая мРНК транслируется, начинается синтез ферментов, необходимых для образования дочерних копий ДНК. Синтез клеточной ДНК может временно усиливаться, но затем обязательно подавляется регуляторными белками вируса.

Поздняя фаза репродукции . В течение поздней фазы дочерняя вирусная ДНК продолжает активно транскрибироваться клеточными РНК-полимеразами, в результате чего появляются продукты поздних вирусспецифических синтезов. «Поздняя» мРНК мигрирует в цитоплазму и транслируется на рибосомах. В результате синтезируются капсидные белки дочерней популяции, которые транспортируются в ядро и собираются вокруг молекул дочерней ДНК новых вирусных частиц. Выход полных дочерних популяций сопровождается гибелью клетки.

начальный период включает стадии адсорбции вируса на клетке, проникновения в клетку, дезинтеграции (депротеинизации) или "раздевания" вируса. Вирусная нуклеиновая кислота была доставлена в соответствующие клеточные структуры и под действием лизосомальных ферментов клетки освобождается от защитных белковых оболочек. В итоге формируется уникальная биологическая структура: инфицированная клетка содержит 2 генома (собственный и вирусный) и 1 синтетический аппарат (клеточный);

После этого начинается вторая группа процессов репродукции вируса, включающая средний и заключительный периоды, во время которых происходят репрессия клеточного и экспрессия вирусного генома. Репрессию клеточного генома обеспечивают низкомолекулярные регуляторные белки типа гистонов, синтезируемые в любой клетке. При вирусной инфекции этот процесс усиливается, теперь клетка представляет собой структуру, в которой генетический аппарат представлен вирусным геномом, а синтетический аппарат - синтетическими системами клетки.

2. Дальнейшее течение событий в клетке направлено на репликацию вирусной нуклеиновой кислоты (синтез генетического материала для новых вирионов) и реализацию содержащейся в ней генетической информации (синтез белковых компонентов для новых вирионов). У ДНК-содержащих вирусов, как в прокариотиче-ских, так и в эукариотических клетках, репликация вирусной ДНК происходит при участии клеточной ДНК-зависимой ДНК-полимеразы. При этом у однонитевых ДНК-содержащих вирусов сначала образуется комплементарная нить - так называемая репликативная форма, которая служит матрицей для дочерних молекул ДНК.

3. Реализация генетической информации вируса, содержащейся в ДНК, происходит следующим образом: при участии ДНК-зависимой РНК-полимеразы синтезируются и-РНК, которые поступают на рибосомы клетки, где и синтезируются вирусспе-цифические белки. У двунитевых ДНК-содержащих вирусов, геном которых транскрибируется в цитоплазме клетки хозяина, это собственный геномный белок. Вирусы, геномы которых транскрибируются в ядре клетки, используют содержащуюся там клеточную ДНК-зависимую РНК-полимеразу.

У РНК-содержащих вирусов процессы репликации их генома, транскрипции и трансляции генетической информации осуществляются иными путями. Репликация вирусных РНК, как минус-, так и плюс-нитей, осуществляется через репликативную форму РНК (комплементарную исходной), синтез которой обеспечивает РНК-зависимая РНК-полимераза - это геномный белок, который есть у всех РНК-содержащих вирусов. Репликативная форма РНК минус-нитевых вирусов (плюс-нить) служит не только матрицей для синтеза дочерних молекул вирусной РНК (минус-нитей), но и выполняет функции и-РНК, т. е. идет на рибосомы и обеспечивает синтез вирусных белков (трансляцию).

У плюс-нитевых РНК-содержащих вирусов функцию трансляции выполняют ее копии, синтез которых осуществляется через репликативную форму (минус-нить) при участии вирусных РНК-зависимых РНК-полимераз.

У некоторых РНК-содержащих вирусов (реовирусы) имеется совершенно уникальный механизм транскрипции. Он обеспечивается специфическим вирусным ферментом - ревертазой (обратной транскриптазой) и называется обратной транскрипцией. Суть ее состоит в том, что вначале на матрице вирусной РНК при участии обратной транскрипции образуется транскрипт, представляющий собой одну нить ДНК. На нем с помощью клеточной ДНК-зависимой ДНК-полимеразы синтезируется,вторая нить и формируется двунитевой ДНК-транскрипт. С него обычным путем через образование и-РНК происходит реализация информации вирусного генома.

Результатом описанных процессов репликации, транскрипции и трансляции является образование дочерних молекул вирусной нуклеиновой кислоты и вирусных белков, закодированных в геноме вируса.

После этого наступает третий, заключительный период взаимодействия вируса и клетки. Из структурных компонентов (нуклеиновых кислот и белков) на мембранах цитоплазматического ретикулума клетки собираются новые вирионы. Клетка, геном которой был репрессирован (подавлен), обычно гибнет. Вновь сформировавшиеся вирионы пассивно (в результате гибели клетки) или активно (путем почкования) покидают клетку и оказываются в окружающей ее среде.

Таким образом, синтез вирусных нуклеиновых кислот и белков и сборка новых вирионов происходят в определенной последовательности (разобщены во времени) и в разных структурах клетки (разобщен в пространстве), в связи с чем способ репродукции вирусов и был назван дизъюнктивным (разобщенным). При абортивной вирусной инфекции процесс взаимодействия вируса с клеткой по тем или иным причинам прерывается до того, как произошло подавление клеточного генома. Очевидно, что в этом случае генетическая информация вируса реализована не будет и репродукции вируса не происходит, а клетка сохраняет свои функции неизменными.

При латентной вирусной инфекции в клетке одновременно функционируют оба генома, а при вирус-индуцированных трансформациях вирусный геном становится частью клеточного, функционирует и наследуется вместе с ним.

Иммунофлюоресцентный метод (РИФ, реакция иммунофлюоресценции, реакция Кунса) - метод выявления специфических АГ с помощью АТ, конъюгированных с флюорохромом. Обладает высокой чувствительностью и специфичностью.

Применяется для экспресс-диагностики инфекционных заболеваний (идентификация возбудителя в исследуемом материале), а также для определения АТ и поверхностных рецепторов и маркеров лейкоцитов (иммунофенотипирование) и др. клеток.

Обнаружение бактериальных и вирусных антигенов в инфекционных материалах, тканях животных и культурах клеток при помощи флюоресцирующих антител (сывороток) получило широкое применение в диагностической практике. Приготовление флюоресцирующих сывороток основано на способности некоторых флюорохромов (например, изотиоцианата флюоресцеина) вступать в химическую связь с сывороточными белками, не нарушая их иммунологической специфичности.

Различают три разновидности метода: прямой, непрямой, с комплементом. Прямой метод РИФ основан на том, что антигены тканей или микробы, обработанные иммунными сыворотками с антителами, меченными флюорохромами, способны светиться в УФ-лучах люминесцентного микроскопа. Бактерии в мазке, обработанные такой люминесцирующей сывороткой, светятся по периферии клетки в виде каймы зеленого цвета.

Непрямой метод РИФ заключается в выявлении комплекса антиген - антитело с помощью антиглобулиновой (против антитела) сыворотки, меченной флюорохромом. Для этого мазки из взвеси микробов обрабатывают антителами антимикробной кроличьей диагностической сыворотки. Затем антитела, не связавшиеся антигенами микробов, отмывают, а оставшиеся на микробах антитела выявляют, обрабатывая мазок антиглобулиновой (антикроличьей) сывороткой, меченной флюорохромами. В результате образуется комплекс микроб + антимикробные кроличьи антитела + антикроличьи антитела, меченные флюорохромом. Этот комплекс наблюдают в люминесцентном микроскопе, как и при прямом методе.

Механизм. На предметном стекле готовят мазок из исследуемого материала, фиксируют на пламени и обрабатывают иммунной кроличьей сывороткой, содержащей антитела против антигенов возбудителя. Для образования комплекса антиген - антитело препарат помещают во влажную камеру и инкубируют при 37 °С в течение 15 мин, после чего тщательно промывают изотоническим раствором хлорида натрия для удаления не связавшихся с антигеном антител. Затем на препарат наносят флюоресцирующую антиглобулиновую сыворотку против глобулинов кролика, выдерживают в течение 15 мин при 37 °С, а затем препарат тщательно промывают изотоническим раствором хлорида натрия. В результате связывания флюоресцирующей антиглобулиновой сыворотки с фиксированными на антигене специфическими антителами образуются светящиеся комплексы антиген - антитело, которые обнаруживаются при люминесцентной микроскопии.


22. Иммуноферментный анализ - лабораторный иммунологический метод качественного или количественного определения различных соединений, макромолекул, вирусов и пр., в основе которого лежит специфическая реакции антиген-антитело. Выявление образовавшегося комплекса проводят с использованием фермента в качестве метки для регистрации сигнала.

Классификация:

Конкурентный (в системе одновременно присутствует анализируемое соединение и его аналог)

Неконкурентный (Если в системе присутствуют только анализируемое соединение и соответствующие ему центры связывания (антиген и специфические антитела))

Прямой и непрямой

1.сыворотку,содержащую смесь ат, инкубируют с аг, фиксированным на твердом субстрате.

2.ат,не связывающие аг, удаляют многократным промыванием.

3. вносят меченную ферментом антисыворотку к ат, связывавшим аг

4.определят количество фермента-маркера, связавшегося с ат

Непрямой:

Ат-положительная сыворотка

1.специфические ат в иследуемой сыворотке связывают аг, фиксированный на твердом субстрате

2. специфичные ат, меченные ферментом,не взаимодействуют со связанным аг-содержание маркера в субстрате низкое

Ат-отрицательная сыворотка

1. Неспецифические ат в исследуемой сыворотке не связывают аг, фиксированный на твердом субстрате

2. Специфические ат, меченные ферментом, взаимодействуют, с фиксированным аг –содержание маркера высокое

Наиболее распространен твердофазный ифа, при котором один из компонентов иммунной реакции(антиген или антитело) сорбирован на твердом носителе. В качестве твердого носителя используется микропанели из полистирола. При определении антител в лунки с сорбированным антигеном последовательно добавляют сыворотку крови, меченную ферментом, и смесь растворов для фермента и хромогена. Каждый раз после добавления очередного компонента из лунок удаляют не связавшиеся реагенты путем тщательного промывания. При положительном результате изменяется цвет раствора хромогена.

Твердофазный носитель можно сенсибилизировать не только антигеном, но и антителом. Тогда в лунки с сорбированными антителами вносят искомый антиген, добавляют иммунную сыворотку против антигена, меченную ферментом, а затем-смесь растворов субстрата для фермента и хромогена.

Применение: для диагностики заболеваний, вызванных вирусными и бактериальными возбудителями.

23. Серологическая реакция - реакция, с помощью которой исследуется реакция антигена (микроба, вируса, чужеродного белка) с антителами сыворотки крови.

Серологические исследования - это методы изучения определенных антител или антигенов в сыворотке крови больных, основанные на реакциях иммунитета. С их помощью также выявляют антигены микробов или тканей с целью их идентификации.

Обнаружение в сыворотке крови больного антител к возбудителю инфекции или соответствующего антигена позволяет установить причину заболевания.

Серологические исследования применяют также для определения антигенов групп крови, тканевых антигенов и уровня гуморального звена иммунитета.

Серологические исследования включают в себя различные серологические реакции:

1. Реакция агглютинации.

2. Реакция преципитации.

3. Реакция нейтрализации.

4. Реакция с участием комплемента.

5. Реакция с использованием меченых антител или антигенов.

Иммунофлюоресцентный метод (РИФ, реакция иммунофлюоресценции, реакция Кунса) - метод выявления специфических Аг с помощью Ат, конъюгированных с флюорохромом. Обладает высокой чувствительностью и специфичностью.

Применяется для экспресс-диагностики инфекционных заболеваний (идентификация возбудителя в исследуемом материале), а также для определения Ат и поверхностных рецепторов и маркеров лейкоцитов (иммунофенотипирование) и др. клеток.

Обнаружение бактериальных и вирусных антигенов в инфекционных материалах, тканях животных и культурах клеток при помощи флюоресцирующих антител (сывороток) получило широкое применение в диагностической практике. Приготовление флюоресцирующих сывороток основано на способности некоторых флюорохромов (например, изотиоцианата флюоресцеина) вступать в химическую связь с сывороточными белками, не нарушая их иммунологической специфичности.

Различают три разновидности метода: прямой, непрямой, с комплементом. Прямой метод РИФ основан на том, что антигены тканей или микробы, обработанные иммунными сыворотками с антителами, меченными флюорохромами, способны светиться в УФ-лучах люминесцентного микроскопа. Бактерии в мазке, обработанные такой люминесцирующей сывороткой, светятся по периферии клетки в виде каймы зеленого цвета.

Непрямой метод РИФ заключается в выявлении комплекса антиген - антитело с помощью антиглобулиновой (против антитела) сыворотки, меченной флюорохромом. Для этого мазки из взвеси микробов обрабатывают антителами антимикробной кроличьей диагностической сыворотки. Затем антитела, не связавшиеся антигенами микробов, отмывают, а оставшиеся на микробах антитела выявляют, обрабатывая мазок антиглобулиновой (антикроличьей) сывороткой, меченной флюорохромами. В результате образуется комплекс микроб + антимикробные кроличьи антитела + антикроличьи антитела, меченные флюорохромом. Этот комплекс наблюдают в люминесцентном микроскопе, как и при прямом методе.

Механизм. На предметном стекле готовят мазок из исследуемого материала, фиксируют на пламени и обрабатывают иммунной кроличьей сывороткой, содержащей антитела против антигенов возбудителя. Для образования комплекса антиген - антитело препарат помещают во влажную камеру и инкубируют при 37 °С в течение 15 мин, после чего тщательно промывают изотоническим раствором хлорида натрия для удаления не связавшихся с антигеном антител. Затем на препарат наносят флюоресцирующую антиглобулиновую сыворотку против глобулинов кролика, выдерживают в течение 15 мин при 37 °С, а затем препарат тщательно промывают изотоническим раствором хлорида натрия. В результате связывания флюоресцирующей антиглобулиновой сыворотки с фиксированными на антигене специфическими анти телами образуются светящиеся комплексы антиген - антитело, которые обнаруживаются при люминесцентной микроскопии.

4. В воздухе детской спальни яслей обнаружено 75 мт/м3 стрептококка, 12 мт/м3 стафилококка и 1 мт/м3 туберкулезных бактерий. Дать санитарно-бактериологическую оценку воздуха и наметить план его санации.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № _54

Ретровирусы. ВИЧ-инфекция (СПИД), и ее возбудители.

Вирус иммунодефицита человека вызывает ВИЧ-инфекцию, заканчивающуюся развитием синдрома приобретенного иммунного дефицита.

Возбудитель ВИЧ-инфекции - лимфотропный вирус, относящийся к семейству Retroviridae роду Lentivirus.

Морфологические свойства: РНК-содержащий вирус. Вирусная частица сферической формы Оболочка состоит из двойного слоя липидов, пронизанного гликопротеинами. Липидная оболочка происходит из плазматической мембраны клетки хозяина, в которой репродуцируется вирус. Гликопротеиновая молекула состоит из 2 субъединиц, находящихся на поверхности вириона и пронизывающих его липидную оболочку.

Сердцевина вируса конусовидной формы, состоит из капсидных белков, ряда матриксных белков и белков протеазы. Геном образует две нити РНК, для осуществления процесса репродукции ВИЧ имеет обратную транскриптазу, или ревертазу.

Геном вируса состоит из 3 основных структурных генов и 7 регуляторных и функциональных генов. Функциональные гены выполняют регуляторные функции и обеспечивают осуществление процессов репродукции и участие вируса в инфекционном процессе.

Вирус поражает в основном Т- и В-лимфоциты, некоторые клетки моноцитарного ряда (макрофаги, лейкоциты), клетки нервной системы.

Культуральные свойства: на культуре клеток Т-лимфоцитов и моноцитов человека (в присутствии ИЛ-2).

Антигенная структура: 2 типа вируса - ВИЧ-1 и ВИЧ-2 ВИЧ-1, имеет более 10 генотипов (субтипов): А, В, С, D, E, F…, отличающихся между собой по аминокислотному составу белков.

ВИЧ-1 делят на 3 группы: М, N, О. Большинство изолятов относится к группе М, в которой выделяют 10 подтипов: А, В, С, D, F-l, F-2, G, Н, I, К. Устойчивость: Чувствителен к физическим и химическим факторам, гибнет в при нагревании. Вирус может длительно сохраняться в высушенном состоянии, в высохшей крови.

Факторы патогенности, патогенез: Вирус прикрепляется к лимфоциту, проникает в клетку и репродуцирует в лимфоците. В результате размножения ВИЧ в лимфоците последние разрушаются или теряют свои функциональные свойства. В результате размножения вируса в различных клетках происходит накопление его в органах и тканях, и он обнаруживается в крови, лимфе, слюне, моче, поте, каловых массах.

При ВИЧ-инфекции снижается число Т-4-лимфоцитов, нарушается функция В-лимфоцитов, подавляется функция естественных киллеров и ответ на антигены снижается и нарушается продукция комплемента, лимфокинов и других факторов, регулирующих иммунные функции (ИЛ), в результате чего наступает дисфункция иммунной системы.

Клиника: поражается дыхательная система (пневмония, бронхиты); ЦНС (абсцессы, менингиты); ЖКТ (диареи), возникают злокачественные новообразования (опухоли внутренних органов).

ВИЧ-инфекция протекает в несколько стадий: 1) инкубационный период, составляющий в среднем 2-4 недели; 2) стадия первичных проявлений, характеризующаяся вначале острой лихорадкой, диареей; завершается стадия бессимптомной фазой и персистенцией вируса, восстановлением самочувствия, однако в крови определяются ВИЧ-антитела, 3) стадия вторичных заболеваний, проявляющихся поражением дыхательной, нервной системы. Завешается ВИЧ-инфекция последней, 4-й терминальной стадией- СПИДом.

Микробиологическая диагностика.

Вирусологические и серологические исследования включают методы определения антигенов и антител ВИЧ. Для этого используют ИФА, ИБ и ПЦР. Сыворотки больных ВИЧ-1 и ВИЧ-2 содержат антитела ко всем вирусным белкам. Однако для подтверждения диагноза определяют антитела к белкам gp41, gpl20, gpl60, p24 у ВИЧ-1 и антитела к белкам gp36, gpl05, gpl40 у ВИЧ-2. ВИЧ-антитела появляются через 2-4 недели после инфицирования и определяются на всех стадиях ВИЧ.

Метод выявления вируса в крови, лимфоцитах. Однако при любой положительной пробе для подтверждения результатов ставится реакция ИБ. Применяют также ПЦР, способную выявлять ВИЧ-инфекцию в инкубационном и раннем клиническом периоде, однако ее чувствительность несколько ниже, чем у ИФА.

Клинический и серологический диагнозы подтверждаются иммунологическими исследованиями, если они указывают на наличие иммунодефицита у обследуемого пациента.

Диагностическая иммуноферментная тест-система для определения антител к ВИЧ – включает вирусный АГ, адсорбированный на носителе, АТ против Ig человека. Используется для серодиагностики СПИДа.

Лечение: применение ингибиторов обратной транскриптазы, действующих в активированных клетках. Препараты являются производные тимидина - азидотимидин и фосфазид.

Профилактика. Специфическая - нет.

Влияние физических и химических факторов на микробы. Мутация и ее значение для практической медицины. Примеры. Значение экологии.

Действие химических и биологических факторов.

Действие химических веществ

Химические вещества могут тормозить или полностью подавлять рост микроорганизмов. Если химическое вещество подавляет рост бактерий, но после удаления их рост вновь возобновляется.

Противомикробные вещества с учетом химического строения и механизма их бактерицидного действия на бактерии можно подразделить на следующие группы: окислители, галогены, соединения металлов, кислоты и щелочи, поверхностно-активные вещества, спирты, красители, производные фенола и формальдегида.

Окислители. К этой группе относятся перекись водорода и калия перманганат.

Галогены. Хлор, йод и их препараты: хлорная известь, хлорамин Б, пантоцид, раствор йода спиртовый 5%-ный, йодинол, йодоформ.

Соединения тяжелых металлов (соли свинца, меди, цинка, серебра, ртути; металлорганические соединения серебра: протаргол, колларгол). Эти соединения способны оказывать как противомикробное, так и разнохарактерное местное действие на ткани макроорганизма.

Кислоты и щелочи. В основе бактерицидного действия кислот и щелочей лежат дегидратация микроорганизмов, изменение рН питательной среды, гидролиз коллоидных систем и образование кислотных или щелочных альбуминатов.

Красители обладают свойствами задерживать рост бактерий. Они действуют медленно, но более избирательно.

Формальдегид-бесцветный газ. В практике применяют 40%-ный водный раствор формальдегида (формалин). Газообразный и растворенный в воде формальдегид губительно влияет на вегетативные и споровые формы бактерий.

Действие биологических факторов

Действие биологических факторов проявляется прежде всего в антагонизме микробов, когда продукты жизнедеятельности одних микробов обусловливают гибель других.

Антибиотики (от греч. anti - против, bios - жизнь) - биологически активные вещества, образуемые в процессе жизнедеятельности грибов, бактерий, животных, растений и созданные синтетическим путем, способные избирательно подавлять и убивать микроорганизмы, грибы, риккетсии, крупные вирусы, простейшие и отдельные гельминты.

3. Реакция биологической активности бактериальных ферментов при ревматизме, диагностическое и практическое значение, защитная роль антител против ферментов в приобретенном иммунитете (определение антигиалуронидазы и анти О-стрептолизина).

Ревматизм - общее заболевание инфекционно-аллергического характера, при котором поражается соединительная ткань, главным образом сердечно-сосудистой системы, а также суставы, внутренние органы, центральная нервная система. Считается, что причиной развития ревматизма является активация патогенных микроорганизмов, главным образом бета-гемолитического стрептококка группы А. Именно ему отводится главная роль в этиологии и патогенезе ревматической болезни. Во-первых, заболевание развивается на фоне стрептококковой инфекции. Во-вторых, в крови больных обнаруживается большое количество антител к микроорганизмам этой группы. В-третьих, профилактика заболевания успешно проводится антибактериальными препаратами.

При ревматоидном артрите синовиальные мембраны, по невыясненным причинам, секретируют большое количество фермента глюкозо-6-фосфат дегидрогеназы которая также разрушает дисульфидные связи в клеточной мембране. При этом наблюдается «утечка» протеолитических ферментов из клеточных лизосом, которые вызывают повреждения близлежащих костей и хрящей. Организм отвечает на это путём выработки цитокинов, среди которых также есть фактор некроза опухоли α TNF-α. Каскады реакций в клетках, которые запускаются цитокинами, ещё больше усугубляют симптомы болезни. Хроническое ревматоидное воспаление, ассоциированное с TNF-α, очень часто вызывает повреждения хрящей и суставов, ведущие к физической нетрудоспособности.

Реакция иммунофлюоресценции - РИФ (метод Кунса).Различают три разновидности метода прямой, непрямой, с комплементом. Реакция Кунса является методом экспресс-диагностики для выявления антигенов микробов или определения антител.

Прямой метод РИФ основан на том, что антигены тканей или микробы, обработанные иммунными сыворотками с антителами, меченными флюорохромами, способны светиться в УФ-лучах люминесцентного микроскопа. Бактерии в мазке, обработанные такой люминесцирующей сывороткой, светятся по периферии клетки в виде каймы зеленого цвета.

Непрямой метод РИФ заключается в выявлении комплекса антиген - антитело с помощью

антиглобулиновой (против антитела) сыворотки, меченной флюорохромом. Для этого мазки из взвеси микробов обрабатывают антителами антимикробной кроличьей диагностической сыворотки. Затем антитела, не связавшиеся антигенами микробов, отмывают, а оставшиеся на микробах антитела выявляют, обрабатывая мазок антиглобулиновой (антикроличьей) сывороткой, меченной

флюорохромами. В результате образуется комплекс микроб + антимикробные кроличьи антитела +антикроличьи антитела, меченные флюорохромом. Этот комплекс наблюдают в люминесцентном

микроскопе, как и при прямом методе.

23. Иммуноферментный анализ Ингредиенты, постановка, учёт, оценка. Области применения.

I Радиоиммунный анализ.

Радиоиммунный метод, или анализ (РИА), - высокочувствительный метод, основанный на реакции антиген - антитело с применением антигенов или антител, меченных радионуклидом (125J, 14С, ЗН, 51Сг и др.). После их взаимодействия отделяют образовавшийся радиоактивный иммунный комплекс и определяют его радиоактивность в соответствующем счетчике (бета- или гамма-излучение). Интенсивность излучения прямо пропорциональна количеству связавшихся молекул антигена и антител.

добавляют сыворотку крови больного, антиглобулиновую сыворотку, меченную ферментом и субстрат/хромоген для фермента.

II. При определении антигена в лунки с сорбированными антителами вносят антиген (напр., сыворотку крови с искомым антигеном), добавляют диагностическую сыворотку против него и вторичные антитела (против диагностической сыворотки), меченные ферментом, а затем субстрат/хромоген для фермента.

24. Реакции иммунного лизиса, применение. Реакция связывания комплемента. Ингредиенты, постановка, учёт, оценка. Применение.

Реакция связывания комплемента (РСК) заключается в том, что при соответствии друг другу антигенов и антител они образуют иммунный комплекс, к которому через Fc-фрагмент антител присоединяется комплемент (С), те происходит связывание комплемента комплексом антиген - антитело. Если же комплекс антиген - антитело не образуется, то комплемент остается свободным. РСК проводят в две фазы 1 -я фаза - инкубация смеси, содержащей антиген + антитело + комплемент, 2-я фаза (индикаторная) - выявление в смеси свободного комплемента путем добавления к ней гемолитической системы, состоящей из эритроцитов барана, и гемолитической сыворотки, содержащей антитела к ним. В 1-й фазе реакции при образовании комплекса антиген - антитело происходит связывание им комплемента, и тогда во 2-й фазе гемолиз сенсибилизированных антителами эритроцитов не произойдет (реакция положительная). Если антиген и антитело не соответствуют друг другу (в исследуемом образце нет антигена или антитела), комплемент остается свободным и во 2-й фазе присоединится к комплексу эритроцит - антиэритроцитарное антитело, вызывая гемолиз (реакция отрицательная).

25. Динамика формирования клеточного иммунного ответа, его проявления. Иммунологическая
память.

Ответ иммунный клеточный (КИО) - сложная, многокомпонентная кооперативная реакция иммунной системмы, индуцированная чужеродным антигеном (Т-клеточными эпитопами). Реализуется Т-системой иммунитета. Этапы КИО

1. захват антигена АПК

2. Процессир. АГ в протеосомах.

3. Образование комплекса пептид+ ГКГ I и II класса.

4. Транспортировка комплемента на мембрану АПК.

5. Распознавание комплемента АГ-специфическими Т-хелперами 1

6. активация АПК и Т-хелперов 1, выделение Е-хелперами1 ИЛ-2 и гамма – интерферона. Пролиферация и дифференцировка в области АГ-зависимых Т-лимфоцитов.

7. Образование зрелых Т-лимфоцитов разных популяций и Т-лимфоцитов памяти.

8. Взаимодействие зрелых Т-лимфоцитов с АГ и реализация конечного эффектора.

Проявления КИО:

противоинфекционный ИО:

противовирусный,

противобактериальный (внутриклеточно расположенные бактерии);,

аллергии IV и I типов;

противоопухолевый ИО;

трансплантационный ИО;

иммунологическая толерантность;

иммунологическая память;

аутоиммунные процессы.

26. Характеристика регуляторных и эффекторных субпопуляций Т-лимфоцитов. Основные
маркёры. Т-клеточный рецептор (ТКР). Генетический контроль разнообразия ТКР

Т-лимфоциты представляют вторую важную популяцию лимфоцитов, предшественники которых образуются в костном мозге и затем мигрируют для дальнейшего созревания и

дифференцировки в тимус (название "Т-лимфоцит" отражает тимусзависимость, как основное место раннего этапа созревания).

По спектру биологической активности Т-лимфоциты являются регуляторными и эффекторными клетками, обеспечивающими адаптационную функцию Т-системы иммунитета. Они не продуцируют молекул антител. ТКР является мембранной молекулой, отличающейся от ВКР, но структурно и функ­ционально близкой к антителам.

TCR – АГ-специф. рецептор. Это главная молекула, относящаяся к суперсемейству Ig. Она имеет 3 части: надмембранную, мембранную и цитоплазматическую. Хвост TCR формируют 2-е глобулярные молекулы альфа и бета, которые имеют вариабульные и константные домены (Vα и Vβ, Сα и Сβ).

Vα и Vβ формируют активный комплекс TCR. Там есть 3 гипервариабельных участка – константнодетерминированные области (КДО). Функция КДО - распознавание и связывание Т-клеточных пептидов, т.е. детерминантных групп АГ. TCR плотно сидит на клетке и его цитоплазматический хвост, его цитоплазматическая часть, учавствует в проведении инф. В ядро при его взаимодействии с АГ. Примерно 90 % TCR. Несут цепи альфа и бета, а примерно 10% несут цепи гамма и дельта.

TCR кодируется генетически. α и γ цепи по аналогии с легкими цепями ИГ кодируются V,G и C – генами, а β и δ по аналогии с тяжелыми цепями ИГ - V,G,E. α и γ в 7-й хромосоме, а β и δ в 14.

CD-3 рецептор – это комплементарная структура, Ig молекула. Она образована 3-мя трансмембранными белками: εδ, εγ и димер-дзета., надмембранный, vембранный и цитозолный хвост. Они с TCR представляют единый комплекс, Который обеспечивает проведение АГ –специфических сигналов в ядро клетки

СD4 и СD8. Они экспрессируют или одновременно с TCR или отдельно от него. Играют функцию ко-рецепторов. Они усиливают адгезию с АГ-презентирующей клеткой. Обеспечивают проведение АГ-специфического сигнала в ядро клетки.

Т-лимфоциты разделены по типу разпозн, МОЛЕКУЛ:

СD4 распозн. Пептид ГКГ 2-го класса

СD8 пептид + ГКГ 1-го класса

Характеристика основных субпопуляций Т-лимфоцитов: популяцию Т-лимфоцитов можно классифицировать на три класса:

A. Хелперы, эффекторы ГЗТ (CD 4+) и Супрессоры-цитотоксические (CD 8+);

B. Нестимулированные (CD 45 RA+) и клетки памяти (CD 45 RO+);

C. Тип 1 - (ИЛ-2, ИНФ-гамма, ТНФ-бэта продуцирующие);
Тип 2 - (ИЛ-4, ИЛ-5, ИЛ-6, ИЛ9, ИЛ 10 продуцирующие).