Домой / Геморрой / Когда 2 начало термодинамики не выполняется. Энтропия

Когда 2 начало термодинамики не выполняется. Энтропия

Выше мы познакомились с термодинамическим методом решения различных физических задач. Все рассуждения при этом основывались на использовании одного из основных законов природы: закона сохранения и превращения энергии, или первого начала термодинамики.

Как показал человеческий опыт, при всей важности этого закона, его, однако, недостаточно для того, чтобы объяснить своеобразие протекания различных явлений в природе. Для того чтобы убедиться в этом, рассмотрим первое начало термодинамики и следствия, вытекающие из него, с несколько иной точки зрения, чем это делалось выше. Математически первое начало термодинамики выражается уравнением:

физический смысл которого сводится к утверждению, что изменение внутренней энергии системы возможно или в результате

совершения работы, или в результате передачи некоторого количества теплоты. Чрезвычайно важно то, что написанное уравнение исчерпывает все возможные способы изменения внутренней энергии системы: внутренняя энергия системы может изменяться только в результате совершения работы или передачи некоторого количества теплоты.

Обратим теперь внимание на то обстоятельство, что оба указанных способа изменения внутренней энергии системы подразумевают взаимодействие ее с какими-то телами, не входящими в рассматриваемую систему. Работа совершается или внешними силами, т. е. силами, действующими на систему со стороны каких-либо не входящих в нее тел, или, наоборот, системой, преодолевающей действие этих внешних сил.

Точно так же количество теплоты, необходимое для изменения внутренней энергии системы, передается последней или от каких-либо тел, не входящих в нее, или от самой системы этим телам.

Необходимость для изменения внутренней энергии системы взаимодействия ее с телами, не входящими в нее, приводит к тому, что в изолированной системе, т. е. в системе, включающей все взаимодействующие тела, внутренняя энергия остается неизменной. Учитывая сказанное, первое начало термодинамики иногда так и формулируют, утверждая, что внутренняя энергия изолированной системы постоянна, или, что то же самое, в изолированной системе

В различных термодинамических системах можно представить себе мысленно самые разнообразные процессы. Первое начало термодинамики позволяет выбрать из этого многообразия процессы, протекание которых с точки зрения энергетических соотношений принципиально возможно.

Предположим, например, что рассматриваемая система состоит из двух порций одной и той же жидкости, имеющих соответственно температуры При сливании этих порций жидкости в условиях изоляции от взаимодействия с какими-либо другими телами для всей смеси устанавливается некоторая общая температура Опираясь на первое начало термодинамики, можно утверждать, что конечная температура всей смеси не может быть больше температуры более теплой из смешиваемых порций жидкости. Процесс, приводящий к подобному результату, не допускается первым началом термодинамики. Более того, на том же основании можно утверждать, что в случае действительно изолированной системы возможны только такие процессы, при которых выполняется следующее равенство:

Огромное значение первого начала термодинамики заключается именно в том, что оно указывает, каким образом выбрать из бесконечного количества процессов, которые человек может себе

представить, те процессы, протекание которых, вообще говоря, возможно.

Однако, помогая выделить возможные процессы, первое начало термодинамики не дает основания для дальнейшего различия между ними: с точки зрения первого начала термодинамики все отобранные процессы одинаково возможны.

Для того чтобы уяснить эту особенность, возвратимся к приведенному выше примеру. При смешении двух порций жидкости с разной температурой с точки зрения первого начала термодинамики возможен любой процесс, в результате которого температура смеси примет значение соответствующее уравнению (21).

Однако с точки зрения первого начала термодинамики вполне возможен и процесс, обратный рассмотренному: первое начало термодинамики допускает возможность того, что жидкость, масса которой имеющая повсюду одинаковую температуру самопроизвольно разделится на две части с различными температурами если только эти температуры удовлетворяют уравнению (21). Первое начало термодинамики не допускает лишь изменения внутренней энергии изолированной системы, но никак не ограничивает перераспределение внутренней энергии внутри данной изолированной системы.

В то же время опыт учит человека тому, что в природе наблюдается иное положение.

Хорошо известно, что при смешении нескольких порций жид кости с разными температурами смесь всегда приобретает некоторую температуру, общую для всей жидкости. Также хорошо известно из опыта, что без воздействия извне в жидкости, имевшей повсюду одинаковую температуру, никогда не возникает разность температур, обусловленная самопроизвольным переходом некоторого количества теплоты от одной части жидкости к Другой.

Точно так же, при смешении водного раствора какой-либо соли с чистой водой всегда наблюдается диффузия растворенного вещества, приводящая к выравниванию концентрации раствора во всей жидкости, и никогда не наблюдается, чтобы растворенное в какой-либо жидкости вещество самопроизвольно собралось бы в одной ее части, в то время как во второй оказался бы чистый растворитель, хотя этот процесс и не противоречит первому началу термодинамики.

Наконец, можно постоянно наблюдать самопроизвольное превращение механической работы в теплоту. Так, например, можно заставить скользить тяжелый брусок по наклонной плоскости, (рис. 101), причем вся работа, совершаемая силой тяжести, будет благодаря трению превращаться в теплоту. В результате трения температура бруска и наклонной плоскости слегка возрастет, а внутренняя энергия системы останется постоянной.

В то же время, сколько бы ни ожидать, не удается наблюдать самопроизвольного охлаждения бруска и наклонной плоскости, в результате которого брусок сам начал бы двигаться вверх по наклонной плоскости, хотя этот процесс может также протекать при неизменной внутренней энергии системы.

Таким образом, возможные с точки зрения первого начала термодинамики процессы оказываются неравноценными в отношении их протекания в том смысле, что, как показывает опыт, в изолированной системе одни из этих процессов протекают, а другие не протекают.

На различие таких процессов и указывается вторым основным законом, или вторым началом, термодинамики.

Второе начало термодинамики утверждает, что существует функция состояния, называемая энтропией, которая обладает тем свойством, что при всех реальных процессах, протекающих в изолированной системе, она возрастает.

Таким образом, второму началу термодинамики можно придать следующую формулировку: в изолированной системе возможны только такие процессы, при которых энтропия системы возрастает.

Часто второе начало термодинамики формулируют несколько иначе, например Кельвин формулировал этот закон в форме утверждения, что невозможен процесс, единственным результатом которого было бы получение от какого-либо тела теплоты и превращение ее в эквивалентное количество работы.

Клаузиус предложил записать второе начало термодинамики как утверждение невозможности самопроизвольного перехода теплоты от более холодного тела к телу более теплому. Эти формулировки второго начала, так же как и еще несколько формулировок, встречающихся в литературе, приводят в конечном счете к одним и тем же выводам, и в этом отношении равноценны.

Формулировка, приведенная в качестве первой, отличается тем, что в ней более ясно выступает общность второго начала термодинамики.

Согласно второму началу термодинамики, для того чтобы ответить на вопрос, возможно ли в изолированной системе то или иное превращение, необходимо рассчитать приращение энтропии при этом превращении, и если это приращение окажется положительным, то рассматриваемое превращение возможно, так как в результате его энтропия изолированной системы возрастает. Те же

процессы, при которых приращение энтропии оказывается отрицательным, в изолированной системе невозможны, поскольку при подобных процессах энтропия изолированной системы должна убывать.

Количественно в термодинамике определяется не энтропия, а разность энтропии, соответствующая какому-либо изменению состояния системы. Новая функция состояния - энтропия - обозначается буквой и согласно определению

Дифференциальное изменение энтропии определяется, таким образом, отношением дифференциально малого количества теплоты, полученного или отданного системой, к температуре, при которой происходит процесс. Для гого чтобы пояснить, как используются формулы (22) и (23), рассмотрим некоторые примеры.

1. Подсчитаем изменение энтропии при плавлении 1 кмоля льда. Удельная теплота плавления льда Плавление льда происходит при постоянной температуре 273° К, и поэтому в уравнении (23) выносится за знак интеграла который в данном случае будет равен количеству теплоты, необходимому для плавления одного киломоля льда.

Таким образом:

2. Один киломоль идеального газа занимает при давлении и температуре объем Определим изменение энтропии при равновесном переходе газа в состояние, характеризуемое параметрами состояния

Запишем первое начало термодинамики:

В случае идеального газа Подставив эти значения в уравнение первого начала, запишем его в виде:

Разделив это уравнение на и приняв во внимание определение энтропии (уравнение 22), получим:

Интегрируя уравнение в пределах от до найдем искомое решение:

Будем считать, что куски настолько велики, что при получении или потере изменением температуры можно пренебречь. Когда теплота переходит от тела более теплого к телу более холодному, общее изменение энтропии в системе составит:

Знак минус ставится в том случае, когда теплота отдается телом, и плюс, когда тело получает некоторое количество теплоты.

В случае, когда теплота переходит от тела более холодного к телу более теплому, общее изменение энтропии системы составит:

Таким образом, переход теплоты от тела более нагретого к телу более холодному сопровождается положительным приращением энтропии, и, следовательно, этот процесс в изолированной системе возможен. Наоборот, переход теплоты от более холодного тела к телу более теплому сопровождается отрицательным приращением энтропии, и, следовательно, в изолированной системе такой процесс невозможен.

В качестве второго примера рассмотрим изменение энтропии при изменении объема идеального газа. Изменение энтропии в этом случае выражается формулой:

Если изменение объема происходит изотермически:

т. е. изменение энтропии будет всегда положительно, когда конечный объем больше начального. Другими словами, идеальный газ, представляющий собой изолированную систему, будет самопроизвольно расширяться, стремясь занять весь предоставленный ему объем.

Выше были рассмотрены наиболее элементарные примеры применения второго начала для определения направления возможного процесса. Однако этот закон позволяет определить направление и более сложных процессов. Кроме того, он дает возможность предопределить, при каких именно условиях данный процесс будет протекать в желательном направлении.

Самопроизвольные и несамопроизвольные процессы. Термодинамически обратимые и необратимые процессы. Работа и теплота обратимого процесса. Формулировка второго начала термодинамики. Энтропия и ее свойства. Зависимость энтропии от температуры, давления, объема. Изменение энтропии при фазовых переходах. Статистическая трактовка второго начала термодинамики. Понятие о термодинамической вероятности состояния системы. Уравнение Больцмана - Планка. Вычисление абсолютной энтропии вещества. Расчет изменения энтропии в ходе химической реакции при различных температурах.

Первый закон термодинамики позволяет за счет неизменности полной энергии системы делать расчеты о превращении одной формы энергии в другую, но нельзя сделать выводы относительно возможности этого процесса, его глубине и направлении.

Для ответа на этим вопросы на основании практических данных было сформулировано второе начало термодинамики. На основании него можно рассчитать и сделать выводы о возможности самопроизвольного протекания процесса, о том, в каких пределах и условиях он протекает и сколько при этом выделится энергии в виде работы или теплоты.

Второй закон применим лишь к макроскопическим системам. Формулировки второго начала термодинамики:

Формулировка Р.Клаузиуса:

Теплота не может самопроизвольно переходить от менее нагретого тела к более нагретому.

Невозможен процесс, единственным результатом которого является превращение теплоты в работу.

Формулировка, предложенная М.Планком и В.Томсоном:

Невозможно построить машину, все действия которой сводились бы к производству работы за счет охлаждения теплового источника (вечный двигатель второго рода).

Рассмотрим работу тепловой машины, т.е. машины, производящей работу за счет теплоты, поглощаемой от какого-либо тела, называемого нагревателем. Нагреватель с температурой Т 1 передает теплоту Q 1 рабочему телу, например, идеальному газу, совершающему работу расширения А; чтобы вернуться в исходное состояние, рабочее тело должно передать телу, имеющему более низкую температуру Т 2 (холодильнику), некоторое количество теплоты Q 2 , причем

Отношение работы А, совершенной тепловой машиной, к количеству теплоты Q 1 , полученному от нагревателя, называется термодинамическим коэффициентом полезного действия (КПД) машины з:

Схема тепловой машины

Для получения математического выражения второго начала термодинамики рассмотрим работу идеальной тепловой машины (машины, обратимо работающей без трения и потерь тепла; рабочее тело - идеальный газ). Работа машины основана на принципе обратимого циклического процесса - термодинамического цикла Карно (рис. 1.2).

Запишем выражения для работы на всех участках цикла:

Цикл Карно.

1 - 2 Изотермическое расширение.

Газ расширяется строго обратимо, поглощая Q теплоты и производя эквивалентную этой теплоте работу.

2 - 3 Адиабатическое расширение.

Температура падает до T 2:

4 - 1 Адиабатическое сжатие.

Система возвращается в первоначальное состояние.

Общая работа в цикле:

3 - 4 Изотермическое сжатие.

Газ отдает холодильнику Q теплоты, эквивалетной работе (см. формулу)

КПД идеальной тепловой машины, работающей по циклу Карно:

Отсюда следует, что КПД макс тепловой машины определяется только разностью температур нагревателя и холодильника. Поскольку любой цикл можно разбить на множество бесконечно малых циклов Карно, то полученное выражение справедливо для тепловой машины, обратимо работающей по любому циклу.

Для необратимо работающей тепловой машины:

Для общего случая можем записать:

Отсюда видно, что КПД может быть равно единице, только при условии если Т 2 будет равно 0 0 К, что практически недостижимо.

На данном этапе целесообразно ввести понятие энтропии. Внутренняя энергия системы условно состоит "свободной" и "связанной" энергий, причем "свободная" энергия может быть переведена в работу, а "связанная" энергия может перейти только в теплоту. Величина связанной энергии тем больше, чем меньше разность температур, и при T = const тепловая машина не может производить работу. Мерой связанной энергии является новая термодинамическая функция состояния, называемая энтропией.

Введем определение энтропии, основываясь на цикле Карно. Преобразуем выражение (I.41) к следующему виду:

Отсюда получаем, что для обратимого цикла Карно отношение количества теплоты к температуре, при которой теплота передана системе (т.н. приведенная теплота) есть величина постоянная.

Это верно для любого обратимого циклического процесса, т.к. его можно представить в виде суммы элементарных циклов Карно, для каждого из которых

Алгебраическая сумма приведённых теплот для произвольного обратимого цикла равна нулю:

Для любого цикла можно записать интеграл по замкнутому контуру:

Если интеграл по замкнутому контуру равен нулю, то выражение под знаком интеграла есть полный дифференциал некоторой функции состояния; эта функция состояния есть энтропия S:

Если система обратимо переходит из состояния 1 в состояние 2, изменение энтропии будет равно:

Подставляя значение изменения энтропии в выражения для первого начала термодинамики получим совместное аналитическое выражение двух начал термодинамики для обратимых процессов:

Для необратимых процессов можно записать неравенства:

Работа обратимого процесса всегда больше, чем того же процесса, проводимого необратимо. Если рассматривать изолированную систему (дQ = 0), то легко показать, что для обратимого процесса dS = 0, а для самопроизвольного необратимого процесса dS > 0.

В изолированных системах самопроизвольно могут протекать только процессы, сопровождающиеся увеличением энтропии.

Энтропия изолированной системы не может самопроизвольно убывать.

Oба этих вывода также являются формулировками второго начала термодинамики.

Статистическая интерпретация энтропии

Применяя представления классической механики к молекулярным системам, атом уподобляют материальной точке и приписывают ему три степени свободы (т.е. число степеней свободы в данном рассмотрении - число независимых переменных, определяющих положение механической системы в пространстве). Предполагается, что этим атомы различимы и как бы могут быть пронумерованы.

Классическая термодинамика рассматривает происходящие процессы безотносительно к внутреннему строению системы; поэтому в рамках классической термодинамики показать физический смысл энтропии невозможно. Для решения этой проблемы Л.Больцманом в теорию теплоты были введены статистические представления. Каждому состоянию системы приписывается термодинамическая вероятность (определяемая как число микросостояний, составляющих данное макросостояние системы), тем большая, чем более неупорядоченным или неопределенным является это состояние. Т.о., энтропия есть функция состояния, описывающая степень неупорядоченности системы. Количественная связь между энтропией S и термодинамической вероятностью W выражается формулой Больцмана:

С точки зрения статистической термодинамики второе начало термодинамики можно сформулировать следующим образом:

Система стремится самопроизвольно перейти в состояние с максимальной термодинамической вероятностью.

Статистическое толкование второго начала термодинамики придает энтропии конкретный физический смысл меры термодинамической вероятности состояния системы.

Понятие статистического веса. Обобщая результаты, полученные в предыдущем примере, можно доказать, что число способов реализации данного макросостояния равно числу сочетаний С из N элементов по n

C = N!/(n!·(N - n)!), где n! = n·(n - 1)·(n - 2)···3·2·1.

Статистический вес или термодинамическая вероятность W - есть число способов, которыми может быть реализовано данное макросостояние.

W(n, N - n) = N!/(n!·(N - n)!)

Легко доказать, что термодинамическая вероятность пропорциональна обычной вероятности. Из формулы следует, что наибольшей вероятностью обладает состояние с равномерным распределением молекул по объему. Однако важно, что в любой момент времени возможны отклонения от этого равновесного состояния, называемые флуктуациями.

Второе начало термодинамики – теплота не может самопроизвольно переходить от тела менее нагретого к телу более нагретому. Под теплотой понимается внутренняя энергия тела.

Рассмотрим систему, способную контактировать с двумя тепловыми резервуарами. Температуры резервуаров (нагреватель) и (холодильник) .. В первоначальном состоянии (поз. 1) температура системы . Приведем ее в тепловой контакт с нагревателем и, квазистатически уменьшив давление, увеличим объем.

Система перешла в состояние с той же температурой , но с большим объемом и меньшим давлением (поз. 2). При этом системой была выполнена работа , а нагреватель передал ей количество теплоты . Далее уберем нагреватель и квазистатически по адиабате переведем систему в состояние с температурой (поз. 3). При этом система выполнит работу . Затем приведем систему в контакт с холодильником и вказистатически уменьшим объем системы. Количество тепла , которое при этом выделит система, поглотится холодильником – ее температура останется прежней.Над системой была выполнена работа (или система выполнила отрицательную работу– ). Состояние системы (поз. 4) выбирается таким, чтобы можно было по адиабате вернуть систему в исходное состояние (поз 1). При этом система выполнит отрицательную работу Т.к. система вернулась в исходное состояние, то внутренняя энергия после цикла осталась прежней, но при этом системой была выполнена работа . Из этого следует, что изменения энергии при выполнении работы компенсировались нагревателем и холодильником. Значит , – количество теплоты, которая пошла на выполнение работы .Коэффициент полезного действия (КПД) определяется по формуле:

.


Отсюда следует, что .


Теорема Карно
гласит, что коэффициент полезного действия тепловой машины, работающей по циклу Карно, зависит только от температур и нагревателя и холодильника, но не зависит от устройства машины, а также от вида рабочего вещества.

Вторая теорема Карно гласит – коэффициент полезного действия всякой тепловой машины не может превосходить коэффициент полезного действия идеальной машины, работающей по циклу Карно с теми же самыми температурами нагревателя и холодильника.

Неравенство Клаузиуса:



Из него видно, что количество теплоты, которое получила система при круговом процессе, отнесенное к абсолютной температуре, при которой происходил процесс, есть величина неположительная. Если процесс квазистатический, то неравенство переходит в равенство:

Это значит, что приведенное количество теплоты, получаемое системой при любом квазистатическом круговом процессе, равно нулю .

– элементарное приведенное количество теплоты, получаемое в бесконечно

малом процессе.

– элементарное приведенное количество теплоты, получаемое в конечном


процессе.

Энтропия системы есть функция ее состояния, определенная с точностью до произвольной постоянной.

Разность энтропий в двух равновесных состояниях и , по определению, равна приведенному количеству теплоты, которое надо сообщить системе, чтобы перевести ее из состояния в состояние по любому квазистатическому пути.

Энтропия выражается функцией:

.


Предположим, что система переходит из равновесного состояния в равновесное состояние по пути , и переход – необратимый (штрихованная). Систему в квазистатически можно вернуть в исходное состояние по другому пути . Опираясь на неравенство Клаузиуса можно написать:

Второе начало термодинамики связано с именами Н. Карно, В. Томсона (Кельвина), Р. Клаузиуса, Л. Больцмана, В. Нернста.

Второе начало термодинамики вводит в рассмотрение новую функцию состояния – энтропию. Термин «энтропия», предложенный Р. Клаузиусом, образован от греч. entropia и означает «превращение».

Уместно будет привести понятие «энтропия» в формулировке А. Зоммерфельда: «Каждая термодинамическая система обладает функцией состояния, называемой энтропией. Энтропия вычисляется следующим образом. Система переводится из произвольно выбранного начального состояния в соответствующее конечное состояние через последовательность состояний равновесия; вычисляются все проводимые при этом к системе порции тепла dQ, делятся каждая на соответствующую ей абсолютную температуру Т, и все полученные таким образом значения суммируются (первая часть второго начала термодинамики). При реальных (неидеальных) процессах энтропия изолированной системы возрастает (вторая часть второго начала термодинамики)».

Учета и сохранения количества энергии еще недостаточно для того, чтобы судить о возможности того или иного процесса. Энергию следует характеризовать не только количеством, но и качеством. При этом существенно, что энергия определенного качества самопроизвольно может превращаться только в энергию более низкого качества. Величиной, определяющей качество энергии, и является энтропия.

Процессы в живой и неживой материи в целом протекают так, что энтропия в замкнутых изолированных системах возрастает, а качество энергии понижается. В этом и есть смысл второго начала термодинамики.

Если обозначить энтропию через S,то

что и соответствует первой части второго начала по Зоммерфельду.

Можно подставить выражение для энтропии в уравнение первого начала термодинамики:

dU =T × dS – dU.

Эта формула известна в литературе как соотношение Гиббса. Это фундаментальное уравнение объединяет первое и второе начала термодинамики и определяет, по существу, всю равновесную термодинамику.

Второе начало устанавливает определенное направление течения процессов в природе, то есть «стрелу времени».

Наиболее глубоко смысл энтропии вскрывается при статической оценке энтропии. В соответствии с принципом Больцмана энтропия связана с вероятностью состояния системы известным соотношением

S =K × LnW,

где W – термодинамическая вероятность, аК – постоянная Больцмана.

Под термодинамической вероятностью, или статическим весом, понимается число различных распределений частиц по координатам и скоростям, соответствующих данному термодинамическому состоянию. При любом процессе, который протекает в изолированной системе и переводит ее из состояния 1 в состояние 2, изменение ΔW термодинамической вероятности положительно или равно нулю:

ΔW = W 2 – W 1 ≥ 0

В случае обратимого процесса ΔW = 0, то есть термодинамическая вероятность, постоянна. Если происходит необратимый процесс, то ΔW > 0 иW возрастает. Это означает, что необратимый процесс переводит систему из менее вероятного состояния в более вероятное. Второе начало термодинамики является статистическим законом, оно описывает закономерности хаотического движения большого числа частиц, составляющих замкнутую систему, то есть энтропия характеризует меру беспорядочности, хаотичности частиц в системе.

Р. Клаузиус определил второе начало термодинамики так:

Невозможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому (1850).

В связи с этой формулировкой в середине XIX в. была определена проблема так называемой тепловой смерти Вселенной. Рассматривая Вселенную как замкнутую систему, Р. Клаузиус, опираясь на второе начало термодинамики, утверждал, что рано или поздно энтропия Вселенной должна достигнуть своего максимума. Переход теплоты от более нагретых тел к менее нагретым приведет к тому, что температура всех тел Вселенной будет одинаковой, наступит полное тепловое равновесие и все процессы во Вселенной прекратятся – наступит тепловая смерть Вселенной.

Ошибочность вывода о тепловой смерти Вселенной заключается в том, что нельзя применять второе начало термодинамики к системе, которая является не замкнутой, а бесконечно развивающей системой. Вселенная расширяется, галактики разбегаются со скоростями, которые нарастают. Вселенная нестационарна.

В основу формулировок второго начала термодинамики положены постулаты, являющиеся результатом многовекового человеческого опыта. Кроме указанного постулата Клаузиуса наибольшую известность получил постулат Томсона (Кельвина), который говорит о невозможности построения вечного теплового двигателя второго рода (perpetuum mobile), то есть двигателя, полностью превращающего теплоту в работу. Согласно этому постулату, из всей теплоты, полученной от источника тепла с высокой температурой – теплоотдатчика, только часть может быть превращена в работу. Остальная часть должна быть отведена в теплоприемник с относительно низкой температурой, то есть для работы теплового двигателя необходимы по крайней мере два тепловых источника различной температуры.

Этим и объясняется причина, по которой нельзя перевести в работу теплоту окружающей нас атмосферы или теплоту морей и океанов при отсутствии таких же масштабных источников теплоты с более низкой температурой.

Второе начало термодинамики

Исторически второе начало термодинамики возникло из анализа работы тепловых машин (С. Карно, 1824). Существует несколько его эквивалентных формулировок. Само название «второе начало термодинамики» и исторически первая его формулировка (1850) принадлежат Р. Клаузиусу.

Первое начало термодинамики, выражая закон сохранения и превращения энергии, не позволяет установить направление протекания термодинамических процессов. Кроме того, можно представить множество процессов, не противоречащих первому началу, в которых энергия сохраняется, а в природе они не осуществляются.

Опыт показывает, что разные виды энергии неравноценны в отношении способности превращаться в другие виды энергии. Механическую энергию можно целиком превратить во внутреннюю энергию любого тела. Для обратных превращений внутренней энергии в другие виды существуют определённые ограничения: запас внутренней энергии, ни при каких условиях, не может превратиться целиком в другие виды энергии. С отмеченными особенностями энергетических превращений связано направление протекания процессов в природе.

Второе начало термодинамики – принцип, устанавливающий необратимость макроскопических процессов, протекающих с конечной скоростью.

В отличие от чисто механических (без трения) или электродинамических (без выделения джоулевой теплоты) обратимых процессов, процессы, связанные с теплообменом при конечной разности температур (т. е. текущие с конечной скоростью), с трением, диффузией газов, расширением газов в пустоту, выделением джоулевой теплоты и т.д., необратимы, т. е. могут самопроизвольно протекать только в одном направлении.

Второе начало термодинамики отражает направленность естественных процессов и налагает ограничения на возможные направления энергетических превращений в макроскопических системах, указывая, какие процессы в природе возможны, а какие – нет.

Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

Формулировки второго закона термодинамики

1). Формулировка Карно : наибольший КПД тепловой машины не зависит от рода рабочего тела и вполне определяется предельными температурами , между которыми машина работает.

2). Формулировка Клаузиуса : невозможен процесс единственным результатом которого является передача энергии в форме теплоты от тела менее нагретого , к телу более нагретому.

Второе начало термодинамики не запрещает переход теплоты от менее нагретого тела к более нагретому. Такой переход осуществляется в холодильной машине, но при этом внешние силы осуществляют работу над системой, т.е. этот переход не является единственным результатом процесса.

3). Формулировка Кельвина : невозможен круговой процесс , единственным результатом которого является превращение теплоты , полученной от нагревателя , в эквивалентную ей работу.

На первый взгляд может показаться, что такой формулировке противоречит изотермического расширения идеального газа. Действительно, всё полученное идеальным газом от какого-то тела тепло превращается полностью в работу. Однако получение тепла и превращение его в работу не единственный конечный результат процесса; кроме того, в результате процесса происходит изменение объёма газа.

P.S. : необходимо обратить внимание на слова «единственным результатом»; запреты второго начала снимаются, если процессы, о которых идёт речь, не являются единственными.

4). Формулировка Оствальда : осуществление вечного двигателя второго рода невозможно.

Вечным двигателем второго рода называется периодически действующее устройство , которое совершает работу за счёт охлаждения одного источника теплоты.

Примером такого двигателя мог бы служить судовой двигатель, получающий тепло из моря и использующий его для движения судна. Такой двигатель был бы практически вечным, т.к. запас энергии в окружающей среде практически безграничен.

С точки зрения статистической физики второе начало термодинамики имеет статистический характер: оно справедливо для наиболее вероятного поведения системы. Существование флуктуаций препятствует точному его выполнению, однако вероятность сколь-нибудь значительного нарушения крайне мала.

Энтропия

Понятие «энтропия» введено в науку Р.Клаузиусом в 1862 г. и образовано из двух слов: «эн » - энергия, «тропэ » - превращаю.

Согласно нулевому началу термодинамики изолированная термодинамическая система с течением времени самопроизвольно переходит в состояние термодинамического равновесия и остаётся в нём сколь угодно долго, если внешние условия сохраняются неизменными.

В равновесном состоянии все виды энергии системы переходят в тепловую энергию хаотического движения атомов и молекул, составляющих систему. Никакие макроскопические процессы в такой системе невозможны.

Количественной мерой перехода изолированной системы в равновесное состояние служит энтропия. По мере перехода системы в равновесное состояние её энтропия возрастает и достигает максимума при достижении равновесного состояния.

Энтропия является функцией состояния термодинамической системы, обозначается: .

Теоретическое обоснование : приведённая теплота , энтропия

Из выражения для КПД цикла Карно: следует, что или , где – количество теплоты, отдаваемое рабочим телом холодильнику, принимаем: .

Тогда последнее соотношение можно записать в виде:

Отношение теплоты, полученной телом в изотермическом процессе, к температуре теплоотдающего тела называется приведённым количеством теплоты :

С учётом формулы (2) формулу (1) представим в виде:

т.е. для цикла Карно алгебраическая сумма приведённых количеств теплоты равна нулю.

Приведённое количество теплоты, сообщаемое телу на бесконечно малом участке процесса: .

Приведённое количество теплоты для произвольного участка:

Строгий теоретический анализ показывает, что для любого обратимого кругового процесса сумма приведённых количеств теплоты равна нулю:

Из равенства нулю интеграла (4) следует, что подынтегральная функция есть полный дифференциал некоторой функции, которая определяется только состоянием системы и не зависит от пути, каким система пришла в это состояние:

Однозначная функция состояния , полным дифференциалом которой является ,называется энтропией .

Формула (5) справедлива лишь для обратимых процессов, в случае неравновесных необратимых процессов такое представление несправедливо.

Свойства энтропии

1). Энтропия определяется с точностью до произвольной постоянной. Физический смысл имеет не сама энтропия, а разность энтропий двух состояний:

. (6)

Пример : если система (идеальный газ) совершает равновесный переход из состояния 1 в состояние 2, то изменение энтропии равно:

,

где ; .

т.е. изменение энтропии идеального газа при переходе его из состояния 1 в состояние 2 не зависит от вида процесса перехода.

В общем случае в формуле (6) приращение энтропии не зависит от пути интегрирования.

2).Абсолютное значение энтропии можно установить с помощью третьего начала термодинамики (теоремы Нернста):

Энтропия любого тела стремиться к нулю при стремлении к абсолютному нулю его температуры : .

Таким образом, за начальную точку отсчёта энтропии принимают при .

3). Энтропия величина аддитивная, т.е. энтропия системы из нескольких тел является суммой энтропий каждого тела: .

4). Как и внутренняя энергия, энтропия есть функция параметров термодинамической системы .

5), Процесс, протекающий при постоянной энтропии называетсяизоэнтропийным.

В равновесных процессах без передачи тепла энтропия не меняется.

В частности, изоэнтропийным является обратимый адиабатный процесс: для него ; , т.е. .

6). При постоянном объёме энтропия является монотонно возрастающей функцией внутренней энергии тела.

Действительно, из первого закона термодинамики следует, что при имеем: , тогда . Но температура всегда. Поэтому приращения и имеют один и тот же знак, что и требовалось доказать.

Примеры изменения энтропии в различных процессах

1). При изобарном расширении идеального газа

2). При изохорном расширении идеального газа

3). При изотермическом расширении идеального газа

.

4). При фазовых переходах

Пример : найти изменение энтропии при превращении массы льда при температуре в пар .

Решение

Первый закон термодинамики: .

Из уравнения Менделеева – Клапейрона следует: .

Тогда выражения для первого закона термодинамики примет вид:

.

При переходе из одного агрегатного состояния в другое, общее изменение энтропии складывается из изменений в отдельных процессах:

A). Нагревание льда от температуры до температуры плавления :

,где –удельная теплоёмкость льда.

Б). Плавление льда: ,где – удельная теплота плавления льда.

В). Нагревание воды от температуры до температуры кипения :

, где –удельная теплоёмкость воды.

Г). Испарение воды: ,где –удельная теплота парообразования воды.

Тогда общее изменение энтропии:

Принцип возрастания энтропии

Энтропия замкнутой системы при любых, происходящих в ней процессах не убывает:

или для конечного процесса: , следовательно: .

Знак равенства относится к обратимому процессу, знак неравенства – к необратимому. Последние две формулы – математическое выражение второго закона термодинамики. Таким образом, введение понятия «энтропия» позволило строго математически сформулировать второе начало термодинамики.

Необратимые процессы приводят к установлению равновесного состояния. В этом состоянии энтропия изолированной системы достигает максимума. Никакие макроскопические процессы в такой системе невозможны.

Величина изменения энтропии является качественной характеристикой степени необратимости процесса.

Принцип возрастания энтропии относится к изолированным системам. Если система неизолированная, то её энтропия может и убывать.

Вывод : т.к. все реальные процессы необратимые, то все процессы в замкнутой системе ведут к увеличению её энтропии.

Теоретическое обоснование принципа

Рассмотрим замкнутую систему, состоящую из нагревателя, холодильника, рабочего тела и «потребителя» совершаемой работы (тело, обменивающееся с рабочим телом энергией только в форме работы), совершающую цикл Карно. Это обратимый процесс, изменение энтропии которого равно:

,

где – изменение энтропии рабочего тела; – изменение энтропии нагревателя; – изменение энтропии холодильника; – изменение энтропии «потребителя» работы.