Домой / Мочеточники / Особенности дыхания в различных условиях. Дыхание в горах и под водой Дыхание на больших глубинах

Особенности дыхания в различных условиях. Дыхание в горах и под водой Дыхание на больших глубинах

Легкое дыхание под водой.

В обычных условиях мы не задумываемся о собственном дыхании - это непроизвольный рефлекторный процесс. Но дышать естественным образом на поверхности не тоже самое, что во время погружения под воду с аквалангом: дыхание через регулятор - неестественный акт, но погружение с аквалангом без него невозможно. Следует уделить особое внимание этой "неестественной" составляющей подводных приключений. Погружение на небольшую глубину в теплой воде - это погружение для отдыха в комфортных и в известной степени безопасных условиях. В случае погружения, например, к затонувшему объекту на глубину порядка 40 м приводит к увеличению физической нагрузки, а дыхание через регулятор может вызвать значительное изменение уровня кислорода, двуокиси углерода и азота в различных тканях организма. Подобные перемены в свою очередь могут вызвать резкое изменение в функционировании дыхательной системы. Отсюда вывод: при погружении с аквалангом вы должны осознанно регулировать свой дыхательный процесс, с тем, чтобы избежать возникновения панических состояний и потери самоконтроля, если вдруг вы почувствуете нехватку воздуха или изменения в вашем самочувствии. Человек в состоянии паники совершает необдуманные спонтанные действия, которые могут привести к эмболии или декомпрессионным состояниям, а в случае потери сознания вы рискуете просто утонуть.

Причины возникновения панических состояний или потери сознания под водой часто трудно точно определить, но природа травм и медицинские заключения, сделанные по поводу несчастных случаев под водой косвенно подтверждают, что регуляция дыхания в этих случаях играет важную роль. К сожалению, сведения о глубинных механизмах влияния дыхания на психическое и эмоциональное состояние человека далеко не полные, т.к. исследования, по понятных причинам, проводятся достаточно редко.

Дыхание в обычных условиях осуществляется рефлекторно, такой механизм заложен природой, чтобы обеспечить физиологически необходимое содержание кислорода и двуокиси углерода в крови и тканях. Мы не задумываемся как это делается - просто дышим. Отличные от обычных уровни кислорода, двуокиси углерода и азота могут оказывать на организм независимое, кумулятивное или интерактивное влияние, которое обостряется глубиной погружения, уровнем физической нагрузки, задержкой дыхания и повышением плотности вдыхаемого газа. Ни в коем случае не следует под водой терять контроль над дыханием.

Случай 1. Последствия накопления двуокиси углерода и диспноэ (нарушение частоты дыхания).

"Мы испытывали новый велотренажер-эрогонометр в изолированной камере при повышенном давлении воздуха. В таких условиях достаточно выражено действие азотного наркоза. Наше состояние было удовлетворительным до тех пор, пока мы не перешли на дозированную подачу воздуха, которая обеспечивала нам лишь половину от необходимого притока свежего воздуха. Напарник прекратил крутить педали уже через 3 минуты эксперимента, у него упала температура тела и "закатились" глаза. Я продолжил испытание, хотя понимал, что воздуха не достаточно, но был решительно настроен завершить эксперимент. В итоге я довел себя до состояния забытья, выходя из которого я испытал самое жуткое ощущение в моей жизни - чувство удушья. Если бы я и мой напарник находились в воде мы неминуемо утонули бы."
Спецфизиолог E. Lanphier.

Накопление двуокиси углерода и нарушение частоты дыхания - причина возникновения панических состояний.

Смеси, которыми аквалангист дышит под водой, практически всегда содержат больше кислорода, чем требуется. Пусковым моментом рефлекторного акта дыхания является накопление в крови двуокиси углерода. Парциальное давление кислорода в газовых смесях для дыхания под водой выше нормы, которая составляет 0,21 атм., а биохимия крови не приспособлена к нормальному газообмену кислорода и двуокиси углерода при таких условиях. Большая часть кислорода, поступающего в организм, переносится в химическом соединении с гемоглобином, содержащемся в красных кровяных тельцах (эритроцитах), в то время как углекислый газ в большей степени растворяется в жидких фракциях крови. На поверхности содержание кислорода в венозной крови понижено, а молекулы двуокиси углерода связываются с освободившимся от кислорода гемоглобином. При повышенном парциальном давлении кислорода во время погружения под воду относительная концентрация в венозной крови связанной гемоглобином двуокиси углерода снижается, т.к. значительно количество гемоглобина по-прежнему занято кислородом, но увеличивается концентрация двуокиси углерода, растворенной в крови, что приводит к общему повышению уровня двуокиси углерода в крови и тканях. Таким образом, не смотря на то, что относительное содержание кислорода в крови достаточно, центр нервной системы, регулирующий дыхание, постоянно получает сигнал, что нужно активизировать дыхание.

При нормальных обстоятельствах высокий уровень СО2 вызывает у человека учащенное дыхание и усиление вентиляции легких приводит к выводу из организма избытка СО2. Под водой этот механизм не срабатывает - даже при учащенном дыхании уровень двуокиси углерода не понижается, повышенное давление в окружающей среде просто не позволяет легким выделить весь накопленный СО2, в результате появляется одышка (диспноэ) и субъективное ощущение "нехватки" воздуха.

Причины накопления двуокиси углерода в организме могут быть различными. На поверхности допустимые уровни физической нагрузки лимитируются, преимущественно, особенностями сердечно-сосудистой системы. Но во время дайвинга именно функции дыхательной системы становятся ограничивающим фактором. При погружении на глубину происходит перераспределение объема крови от нижних конечностей к легким, что в совокупности в повышением давления приводит к уменьшению общего объем легких и, соответственно, изменению режима дыхания. Нормальное функционирование дыхательной системы затрудняется и из-за необходимости преодолевать сопротивление потока вдыхаемого через регулятор воздуха, что вызвано ростом плотности вдыхаемого газа при увеличении с одной стороны глубины и давления, а с другой - нарастанием утомления при увеличении физических нагрузок.

Обычно дыхание через регулятор требует некоторого дополнительного усилия, чтобы открыть свободный поток воздуха через систему подачи. Это не представляет никакой проблемы для аквалангиста, совершающего несложное погружение в хорошо отрегулированном современном оборудовании. Но при определенных условиях, например, из-за разницы давления, зависящей от того, на какой глубине находятся легкие аквалангиста, а на какой - регулятор первой ступени, требуются дополнительные усилия для нормального дыхания.

Концентрация двуокись углерода в организме может увеличиться во время дайвинга, если возникает стрессовая ситуация, человек испытывает волнение или, возможно, азотный наркоз препятствует нормальному дыханию. Иногда аквалангисты сознательно ограничивают дыхательную активность, тормозят дыхание, чтобы сохранить побольше воздуха, что может стать причиной головных болей, появляющихся после погружения.

Нарушение ритма дыхания, паника и быстрое всплывание на поверхность.

Избыток двуокиси углерода обычно вызывает ощущение затрудненного дыхания или одышки, в результате человек испытывает испуг, часто сопровождающийся панической реакцией. Возможна и противоположная ситуация - так как парциальное давление кислорода увеличивается, рост концентрации двуокиси углерода может стать менее эффективным сигналом к усилению вентиляции, что приводит к дальнейшему накоплению СО2.

Важность равномерного дыхания под водой не всегда в достаточной степени подчеркивается во время первоначальной подготовки аквалангистов. Неопытные новички, хотя и прошедшие специальную подготовку, особенно подвержены панической реакции на одышку, что часто приводит к неоправданно быстрому всплытию на поверхность, а это, как известно, прямой путь к декомпрессионной болезни или закупорке кровеносных сосудов, а часто и того и другого вместе.

Если человек предполагает, что дыхание под водой ничем не отличается от дыхания на поверхности, его ждет неприятный сюрприз, если на глубине ввиду реальной или кажущейся экстренной ситуации у него возникнет потребность в активизации дыхания. Хотя такая ситуация может быть очень поучительной, в плане накопления опыта поведения под водой, но, скажем прямо, это не лучший способ получать знания.

Если по какой-либо причине вам не избежать внезапного увеличения физической нагрузки, специалисты рекомендуют увеличить вентиляцию легких путем более глубокого дыхания, но не за счет учащения ритма. Это лучший способ избежать ощущения, что у вас "перехватывает" дыхание или не хватает воздуха. Как быть если вы все-таки "потеряли" дыхание? Лучший способ прекратить какие-либо движения, расслабиться и дать возможность дыханию восстановиться.

Как избежать "азотного наркоза" и уменьшить накопление двуокиси углерода в тканях.

Риск потери сознания под водой в следствие "азотного наркоза", отравления кислородом или избыточного накопление углекислого газа, прямо пропорционален глубине, на которую вы погружаетесь на обычном воздухе.

Аквалангистам, которые намерены совершать глубоководные погружения, следует использовать смеси "Гелиокс" - гелий и кислород, либо траймикс - гелий, азот и кислород. Правда использование этих смесей также имеет свои ограничения и требует дополнительной тренировки, опыта и специального оборудования.

Несчастные случаи, травмы и безопасность.

Прямые доказательства причинно-следственной связи между нарушением дыхания возникновением паники и неоправданно быстрого всплытия встречаются редко, однако, данные, опубликованные в отчете DAN "Декомпрессионные состояния и несчастные случаи при погружении с аквалангом" за 2000 год позволяют предположить, что именно неоправданно быстрое всплытие часто сопровождает несчастные случаи с получением травм вплоть до смертельного исхода. На рисунке 1 приведены сравнительные данные о том, как часто неоправданно быстрое всплытие сопровождало погружения с получение тяжелых травм, смертельным исходом и благополучные погружения без последствий для здоровья. Итак, неоправданно быстрое всплытие зафиксировано в 38 % погружений со смертельным исходом, в 23 % погружений, повлекших травмы и в 1 % благополучных, с точки зрения несчастных случаем, погружений.

Причин неоправданно быстрого всплытия может множество, в том числе потеря контроля за плавучестью или нехватка воздуха для дыхания. На рис. 2, например, приведены данные о том, что нехватка воздуха была зафиксирована в 24 % случаях со смертельным исходом, в 5 % случаев, повлекших травмы, и лишь в 0,3 % благополучных погружений.

Случай 2. Потеря сознания на глубине.

В условиях барокамеры, заполненной водой, моделировалось погружение на глубину 54 метра. Испытуемый "плыл" преодолевая сопротивление, которое создавалось тросом, прикрепленным к грузу. Потребление кислорода составляло 2 литра в минуту. В эксперименте испольховался ребризер закрытого цикла. Парциальное давление кислорода поддерживалось на уровне 1,4 атм. Остальной состав смеси - азот в концентрации дающей наркотический эффект соответствующий дыханию воздухом на глубине 53 метра. Наблюдатель зафиксировал тот факт, что испытуемый постоянно во время эксперимента увеличивал интенсивность выполнения упражнения, не смотря на указание снизить нагрузку. Неожиданно, без всякого предупреждения испытуемый потерял сознание. Эксперимент был немедленно прекращен, испытуемый был извлечен из камеры и очень быстро пришел в себя. Случись такая ситуация в условиях реального погружения, последствия могли бы быть столь же серьезные, что и описанные ниже.

Случай 3. Потеря сознания во сремя глубоководного погружения, повлекшая смерть.

Два опытных аквалангиста совершали погружение к затопленному на глубине 42-51 метр объекту. Через 15 минут нахождения на глубине один из аквалангистов дал знак своему бадди, что у него неприятности и они начали вместе подъем на поверхность. На глубине 24 метра пострадавший дайвер потерял сознание и выпустил регулятор. Попытка бадди вставить регулятор в рот товарища, окончилась неудачей. В результате пострадавший скончался в результате утопления. Аутопсия показала, что первопричиной несчастного случая послужило нарушение сердечной деятельности.

Учащенное дыхание на глубине приводит к накоплению СO2 в организме человека. Этот эффект становится очевидным при увеличении парциального давления кислорода до 1,4 атм. Повышение концентрации двуокиси углерода в организме человека может оказывать "наркотический" эффект. Азотный "наркоз" и "наркоз", вызванный накоплением двуокиси углерода, имеют взаимодополняющий эффект, т.е. если аквалангист находится под воздействием обоих "наркозов", риск потери сознания увеличивается. Эффект таких явлений как азотный "наркоз", повышенные физические нагрузки, затруднение дыхания, высокое парциальное давление кислорода и накопление двуокиси углерода проиллюстрирован вышеописанными случаями. Повышение концентрации двуокиси углерода также приводит к усилению внутричерепного кровотока, следовательно - повышенное снабжение кислородом головного мозга, возможный результат - кислородное отравление нервной ткани. Комбинированный эффект азотного и углеродного "наркозов" и кислородного отравления многократно повышает риск нарушения сознания. Усугубляющее действие оказывает повышение физической нагрузки и увеличение плотности вдыхаемого газа, что опять же влечет за собой накопление в крови двуокиси углерода. Рисунок 3 иллюстрирует связи между глубиной погружения, физическими характеристиками газов, уровнем физической нагрузки и риском потери сознания.

Не вызывает сомнений, что чувствительность или устойчивость к отравлению двуокисью углерода или кислородом, равно как и к азотному наркозу в большой степени зависит от индивидуальных особенностей организма того или иного человека. К сожалению, мы не располагаем достаточно надежными методами, которые позволили бы с уверенностью диагносцировать индивидуальную переносимость и ее изменение в тех или иных условиях.

В заключении можем лишь рекомендовать обращать особое внимание на процесс вашего дыхания при погружении под воду с аквалангом: какими бы ни были ваши индивидуальные особенности рекомендуем держаться в рамках безопасной статистики!!!

Dr. Richard Vann
DAN Research
по материалам Alert Diver IV 2000

Чем выше поднимается человек в горы или чем выше поднимает его самолет, тем более разреженным становится воздух. На высоте 5,5 км над уровнем моря атмосферное давление уменьшается почти вдвое; в той же мере снижается и содержание кислорода. Уже на высоте 4 км нетренированный человек может заболеть так называемой горной болезнью. Однако путем тренировки можно приучить организм к пребыванию и на более значительных высотах. Даже при покорении Эвереста герои-альпинисты не пользовались кислородными приборами. Как же организм приспосабливается к бедному кислородом воздуху?

Основную роль здесь играет увеличение числа , а значит, и нарастание количества гемоглобина крови. У жителей горных областей количество эритроцитов доходит до 6 и более миллионов в 1 мм 3 (вместо 4 млн в обычных условиях). Понятно, что при этом кровь получает возможность захватывать больше кислорода из воздуха.

Между прочим иногда люди, побывавшие в Кисловодске, относят увеличение количества гемоглобина в их крови за счет того, что они хорошо отдохнули и поправились. Дело, конечно, не только в этом, но и просто во влиянии горной местности.

Водолазы и те, кто трудится в кессонах - особых камерах, применяемых при постройке мостов и других гидротехнических сооружений, вынуждены, наоборот, работать при повышенном давлении воздуха. На глубине 50 м под водой водолаз испытывает давление почти в 5 раз выше атмосферного, а ведь ему иногда приходится опускаться под воду на 100 м и более.

Давление воздуха сказывается очень своеобразно. Человек работает в этих условиях часами, не испытывая от повышенного давления никаких неприятностей. Однако при быстром подъеме наверх появляются острые боли в суставах, кожный зуд, ; в тяжелых случаях отмечались смертельные исходы. Отчего это происходит?

В обыденной жизни мы не всегда задумываемся над тем, с какой силой давит на нас атмосферный воздух. Между тем его давление весьма велико и составляет около 1 кг на каждый квадратный сантиметр поверхности тела. Последняя у человека среднего роста и веса равна 1,7 м 2 . В итоге атмосфера давит на нас с силой в 17 тонн! Мы не ощущаем этого огромного сдавливающего воздействия потому, что оно уравновешивается давлением жидкостей тела и растворенных в них газов. Колебания атмосферного давления вызывают ряд сдвигов в организме, что особенно ощущают больные гипертонией и болезнями суставов. Ведь при изменении атмосферного давления на 25 мм рт. ст. сила давления атмосферы на тело меняется более чем на полтонны! Организм должен уравновесить этот сдвиг давления.

Однако, как уже сказано, пребывание под давлением даже в 10 атмосфер относительно неплохо переносится водолазом. Почему же быстрый подъем может оказаться смертельным? Дело в том, что в крови, как и во всякой другой жидкости, при повышенном давлении соприкасающихся с ней газов (воздуха) эти газы растворяются более значительно. Составляющий 4/5 воздуха азот, совершенно безразличный для организма (когда он находится в виде свободного газа), в больших количествах растворяется в крови водолаза. Если давление воздуха быстро снижается, газ начинает выходить из раствора, кровь «кипит», выделяя пузырьки азота. Пузырьки эти образуются в сосудах и могут закупорить жизненно важную артерию - в , мозгу и т. п. Поэтому водолазов и рабочих кессонов очень медленно поднимают на поверхность, чтобы газ выделялся только из легочных капилляров.

Как ни различны эффекты от пребывания высоко над уровнем моря и глубоко под водой, есть одно связывающее их звено. Если человек очень быстро поднимается на самолете в разреженные слои атмосферы, то выше 19 км над уровнем моря нужна полная герметизация. На этой высоте давление снижается настолько, что вода (а стало быть, и кровь) закипает уже не при 100 °С, а при . Могут возникнуть явления декомпрессионной болезни, по своему происхождению аналогичной кессонной болезни.

При подъеме в горы из-за падения атмосферного давления снижается парциальное давление кислорода в альвеолярном пространстве. Когда это давление становится ниже 50 мм рт. ст. (5 км высоты), неадаптированному человеку необходимо дышать газовой смесью, в которой повышено содержание кислорода. На высоте 9 км парциальное давление в альвеолярном воздухе падает до 30 мм рт. ст., и практически выдержать такое состояние невозможно. Поэтому используется вдыхание 100% кислорода. В этом случае при данном барометрическом давлении парциальное давление кислорода в альвеолярном воздухе составляет 140 мм рт. ст., что создает большие возможности для газообмена. На высоте 12 км при вдыхании обычного воздуха альвеолярное давление равно 16 мм рт. ст. (смерть), при вдыхании чистого кислорода - всего лишь 60 мм рт. ст., т. е. дышать еще можно, но уже опасно. В этом случае можно подавать чистый кислород под давлением и обеспечить дыхание при подъеме на высоту 18 км. Дальнейший подъем возможен только в скафандрах .

Дыхание под водой на больших глубинах

При опускании под воду растет атмосферное давление. Например, на глубине 10 м давление равно 2 атмосферам, на глубине 20 м - 3 атмосферам, и т. д. В этом случае парциальное давление газов в альвеолярном воздухе соответственно возрастает в 2 и 3 раза.

Это грозит высоким растворением кислорода. Но избыток его не менее вреден для организма, чем недостаток. Поэтому один из путей уменьшения этой опасности - использование газовой смеси, в которой процентное содержание кислорода уменьшено. Например, на глубине 40 м дают смесь, содержащую 5% кислорода, на глубине 100 м - 2%.

Второй проблемой является влияние азота. Когда парциальное давление азота возрастает, то это приводит к повышенному растворению азота в крови и вызывает наркотическое состояние. Поэтому, начиная с глубины 60 м, азотно-кислородная смесь заменяется гелиокислородной смесью. Гелий менее токсичен. Он начинает оказывать наркотический эффект лишь на глубине 200-300 м. Сейчас проводятся исследования по использованию водородно-кислородных смесей для работы на глубинах до 2 км, т. к. водород очень легкий газ.

Третья проблема водолазных работ - это декомпрессия. Если быстро подниматься с глубины, то растворенные в крови газы вскипают и вызывают газовую эмболию - закупорку сосудов. Поэтому требуется постепенная декомпрессия. Например, подъем с глубины 300 м требует 2-х недельной декомпрессии .

Бытует широко распространенное мнение о том, что наши предки при возникновении той или иной экстремальной ситуации в ходе боевых действий могли успешно дышать, используя простейшие приспособления типа трубки, находясь подолгу погруженными в воду, причем глубина погружения якобы измерялась метрами, время – часами, трубка – простая камышина (например, скрытное форсирование водной преграды, спасаясь от преследования, и т.д.).

Учитывая, что наш человек – фигура творческая, все познанное либо услышанное стремится немедленно проверить практически, считаем себя обязанными предупредить о возможных ошибках, связанных с дыханием в особых условиях. Особенно это связано с возможностью дыхания под водой с использованием подручных средств. Прежде чем затевать подобные проверки, особенно на глубинах более 1 метра, следует четко разобраться в физике процесса.

Отметим, что практическая проверка возможности дыхания под водой с использованием подручных средств, причем на глубинах более 1 метра, как правило, заканчивается весьма плачевно: «экспериментаторы» надолго попадают на больничную койку с серьезными расстройствами кровообращения. Рассказы «бывалых», свой опыт плавания в маске с трубкой (если он имеется) или опора на опыт плавания в маске с трубкой какого-то другого дяди без четкого представления физических процессов, происходящих при этом, – смертельно опасны!

Почему? Причин несколько.

1. Для обеспечения дыхания под водой подручный предмет, через который осуществляется дыхание, должен обладать как минимум проходным сечением, обеспечивающим поступление воздуха к легким в объеме, потребном для акта дыхания, с одной стороны, и обязательно быть над поверхностью воды, даже при ее волнении – с другой, т.к. эффект попадания воды в легкие при дыхании не требует комментариев.

2. Неравенство давлений, действующих изнутри и снаружи тела при его погружении в воду, со всеми вытекающими из этого последствиями.

Рассмотрим схему взаимодействия давления воздуха (снаружи и изнутри) на человека (см. схему на рис. 2.10.), лежащего на кушетке и находящегося под воздействием атмосферного давления воздуха.

Как видно из схемы, внутренняя плевральная полость находится под давлением, равным атмосферному, в то время как и вся наружная поверхность тела (включая грудную клетку) также находится под давлением, равным атмосферному, т.е. 1 кгс/см 2 .

Таким образом, можно говорить о равенстве внутреннего и внешнего давления, действующего на организм человека, а следовательно, об отсутствии (в общем случае) помех, препятствующих нормальному кровообращению под действием атмосферного давления.


Абсолютно иная картина взаимодействия давления воздуха (снаружи и изнутри) на человека возникает при его погружении под воду с обеспечением дыхания через трубку, сообщенную с атмосферой (см. схему на рис. 2.11.).

В этом случае изнутри, со стороны легких, давит воздух с силой одной атмосферы (т.е. те же 1 кгс/см 2), а снаружи на тело (включая грудную клетку) давят:

Воздух с той же силой одной атмосферы (1 кгс/см 2);

Столб воды, высотою, равной глубине погружения.

Что происходит в этом случае?

1. Так, при глубине погружения, например, равной 50 см от поверхности воды, грудная клетка находится под избыточным давлением снаружи, создаваемым столбом воды высотою, равной глубине погружения, т.е. в данном случае 50 см водяного столба, или 50 гс/см 2 (5 кгс/дм 2). Это заметно затрудняет дыхание, т.к. с учетом площади грудной клетки при этом создаются условия, когда приходится дышать уже в условиях, равноценных тем, когда на грудь давит груз в 15–20 кг.

Но это чисто физические трудности, сопровождающие акт дыхания в таких условиях.

2. Дело не только в этих чисто физических трудностях. Гораздо опаснее и серьезнее проявление нарушения кровообращения. Под действием избыточного давления, создаваемого столбом воды и действующего на всю поверхность тела, кровь вытесняется из частей тела, где давление выше (ноги, полость живота), в области меньшего давления – в грудь и голову. Переполненные кровью сосуды этих частей тела препятствуют нормальному оттоку крови от сердца и аорты: последние непомерно расширяются от избытка крови, и в результате – если не смерть, то тяжелое заболевание.

Экспериментальные исследования, проведенные австрийским врачом Р. Штиглером и описанные им в книге «Купанье, плаванье и нырянье» (Вена), полностью подтвердили вышеизложенное. Опыты проделывал он над самим собой, погружая в воду тело и голову с трубкой, ведущей ото рта наружу.

Результаты опытов представлены в таблице 2.

ПОДВОДНАЯ ОХОТА

Особенности дыхания под водой

Мы уже знаем, что имеющийся в воде растворенный кислород не может использоваться человеком для дыхания, так как легкие нуждаются только в газообразном кислороде. Чтобы обеспечить жизнедеятельность организма под водой, необходимо систематически доставлять к легким достаточное количество кислорода. Это может быть осуществлено следующими путями:

Через дыхательную трубку;

При помощи автономных дыхательных аппаратов;

Подачей с поверхности воды в скафандры, батискафы, домики типа Кусто и др.;

Путем регенерации (восстановления) в подводных лодках.

Все эти пути не являются естественными Для человека и имеют свои особенности.

Дыхание через трубку. Известно, что находясь под водой на глубине не больше метра, можно дышать через трубку. На большей глубине дыхательные мышцы, как мы знаем, не могут преодолеть дополнительного сопротивления, которое образуется как при вдохе, так и при выдохе. Практически для плавания под водой применяются дыхательные трубки длиной не более 0,4 м.

Дыхание в автономных аппаратах. Чтобы обеспечить нормальное дыхание на значительной глубине, необходимо подавать в легкие воздух под таким давлением, которое могло бы уравновесить внешнее давление воды на грудную клетку.

В кислородном скафандре дыхательная смесь перед поступлением в легкие сжимается до нужной степени в дыхательном мешке непосредственно давлением окружающей среды.

В автономном дыхательном аппарате на сжатом воздухе эту функцию выполняет легочный автомат.

При этом особенно важно соблюдать определенные пределы сопротивления дыханию, так как значительная величина его оказывает отрицательное воздействие на сердечно-сосудистую систему человека, вызывает утомление дыхательной мускулатуры, вследствие чего организм не в состоянии поддержать необходимый режим дыхания.

У аппаратов легочно-автоматического действия сопротивление дыханию пока еще остается достаточно большим. Величина его оценивается по максимальному разрежению в газопроводящей системе аппарата около загубника, т. е. в непосредственной близости рта человека.

В отечественных аквалангах на воздухе она незначительна и равна примерно 40-60 мм вод. ст. Однако под водой сопротивление особенно вначале вдоха значительно увеличивается и достигает 200-330 мм вод. ст. (при горизонтальном положении пловца).

Сопротивление дыханию зависит:

а) от расположения легочного автомата по отношению к легким человека;

б) от величины механического сопротивления автомата, которое преодолевается дыхательными мышцами. Это - сила пружин, противодавление на клапаны, сила трения в осевых соединениях и др.;

в) от длины шлангов входа и выхода, характера их внутренней поверхности, от величины мундштучной коробки и наличия в ней клапанов.

Из суммарного сопротивления дыханию большую часть составляет сопротивление, зависящее от расположения легочного автомата, т. е. от разницы в давлении на мембрану автомата и грудную клетку. Чтобы уменьшить эту разницу, располагают легочный автомат спереди, на уровне груди пловца, на животе и вблизи мундштучной коробки.

В настоящее время имеются также конструкции легочных автоматов, в которых уменьшение величины сопротивления дыханию достигается различного рода компенсационными устройствами, уменьшением объема камеры легочного автомата и шлангов.