Домой / Мочекаменная болезнь / Этапы промышленной добычи ртути. Ртуть: угрозы реальные и мнимые

Этапы промышленной добычи ртути. Ртуть: угрозы реальные и мнимые

Радиус атома 157 пм Энергия ионизации
(первый электрон) 1 006,0 (10,43) кДж /моль (эВ) Электронная конфигурация 4f 14 5d 10 6s 2 Химические свойства Ковалентный радиус 149 пм Радиус иона (+2e) 110 (+1e) 127 пм Электроотрицательность
(по Полингу) 2,00 Электродный потенциал Hg←Hg 2+ 0,854 В Степени окисления +2, +1 Термодинамические свойства простого вещества Плотность 13,546 (@ +20 °C) /см ³ Молярная теплоёмкость 27,98 Дж /( ·моль) Теплопроводность 8,3 Вт /( ·) Температура плавления 234,28 Теплота плавления 2,295 кДж /моль Температура кипения 629,73 Теплота испарения 58,5 кДж /моль Молярный объём 14,8 см ³/моль Кристаллическая решётка простого вещества Структура решётки ромбоэдрическая Параметры решётки 2,990 Отношение c/a n/a Температура Дебая 100,00
Hg 80
200,59
4f 14 5d 10 6s 2
Ртуть

Ртуть — элемент побочной подгруппы второй группы, шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 80. Обозначается символом Hg (лат. Hydrargyrum). Простое вещество ртуть (CAS-номер: 7439-97-6) — переходный металл, при комнатной температуре представляет собой тяжёлую серебристо-белую заметно летучую жидкость, пары которой чрезвычайно ядовиты. Ртуть — один из двух химических элементов (и единственный металл), простые вещества которых при нормальных условиях находятся в жидком агрегатном состоянии (второй элемент — бром). В природе находится как в самородном виде, так и образует ряд минералов. Чаще всего ртуть получают путём восстановления из её наиболее распространённого минерала — киновари. Применяется для изготовления измерительных приборов, вакуумных насосов, источников света и в других областях науки и техники.

В XIX веке врачи лечили ртутью раны и венерические болезни.

Происхождение названия

Русское название ртути, по одной из версий, — это заимствование из арабского (через тюркские языки); по другой версии, «ртуть» связана с литовским ritu — качу, катаю, происшедшим от индоевропейского рет (х) — бежать, катиться.

Соединения ртути

Ртуть и её соединения применяются в технике, химической промышленности, медицине. Желтый оксид ртути (II) входит в состав глазной мази и мазей для лечения кожных заболеваний. Красный оксид ртути (II) применяется для получения красок.

Хлорид ртути (I), который называется каломель, используется в пиротехнике, а также в качестве фунгицида.

В ряде стран каломель используется в качестве слабительного. Токсическое действие каломели проявляется особенно тогда, когда после приема её внутрь не наступает слабительное действие и организм долгое время не освобождается от этого препарата. Хлорид ртути (II), который называется сулема, является очень токсичным. Сулема применялась в медицине как дезинфицирующее средство, в технике она используется для обработки дерева, получения некоторых видов чернил, травления и чернения стали.

Ртуть относительно редкий элемент в Земной коре со средней концентрацией 0.08 частей на миллион. Однако в виду того, что ртуть слабо связывается химически с наиболее распространёнными в земной коре элементами, ртутные руды могут быть очень концентрированными по сравнению с обычными породами. Наиболее богатые ртутью руды содержат до 2.5 % ртути. Иногда ртуть даже встречается в самородном виде.

В окружающей среде

Уровень ртути в ледниках за 270 лет

До индустриальной революции осаждение ртути из атмосферы составляло около 4 нанограмма на литр льда. Природные источники, такие как вулканы , составляют примерно половину всех выбросов атмосферной ртути. За оставшуюся половину ответственна деятельность человека. В ней основную долю составляют выбросы в результате сгорания угля главным образом в тепловых электростанциях — 65 %, добыча золота — 11 %, выплавка цветных металлов — 6.8 %, производство цемента — 6.4 %, утилизация мусора — 3 %, производство соды — 3 %, чугуна и стали — 1.4 %, ртути (в основном для батареек) — 1.1 %, остальное — 2 %.

Одно из тяжелейших загрязнений ртутью в истории случилось в японском городе Минамата в 1956 году , что привело к более чем трём тысячам жертв, которые либо умерли, либо сильно пострадали от болезни Минамата .

Получение

Химические свойства

Ртуть — малоактивный металл (см. ряд напряжений).

При нагревании до 300 °C ртуть вступает в реакцию с кислородом : 2Hg + O 2 → 2HgO Образуется красного цвета. Эта реакция обратима: при нагревании выше 340 °C оксид разлагается до простых веществ. Реакция разложения оксида ртути исторически является одним из первых способов получения кислорода.

Ртуть не растворяется в растворах кислот, не обладающих окислительными свойствами, но растворяется в царской водке и азотной кислоте , образуя соли двухвалентной ртути. При растворении избытка ртути в азотной кислоте на холоде образуется нитрат .

Из элементов IIБ группы именно у ртути появляется возможность разрушения очень устойчивой 6d 10 — электронной оболочки , что приводит к возможности существования соединений ртути (+4). Так, кроме малорастворимого Hg 2 F 2 и разлагающегося водой HgF 2 существует и HgF 4 , получаемый при взаимодействии атомов ртути и смеси неона и фтора при температуре 4 .

Применение

Ртуть применяется в изготовлении термометров , парами ртути наполняются и люминесцентные лампы . Ртутные контакты служат датчиками положения. Кроме того, металлическая ртуть применяется для получения целого ряда важнейших сплавов.

Ранее различные амальгамы металлов, особенно амальгамы золота и серебра , широко использовались в ювелирном деле , в производстве зеркал и зубных пломб. В технике ртуть широко применялась для барометров и манометров . Соединения ртути использовались как антисептик (сулема), слабительное (каломель), в шляпном производстве и т.д., но в связи с её высокой токсичностью к концу XX века были практически вытеснены из этих сфер (замена амальгамирования на

Ртуть — элемент побочной подгруппы второй группы, шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 80. Обозначается символом Hg (лат. Hydrargyrum).

Ртуть — один из двух химических элементов (и единственный металл), простые вещества которых при нормальных условиях находятся в жидком агрегатном состоянии (второй элемент — бром). В природе находится как в самородном виде, так и образует ряд минералов.
Ртуть (англ. Mercury, франц. Mercure, нем. Quecksilber) входит в число семи металлов древности. Она была известна по крайней мере за 1500 лет до н.э., уже тогда ее умели получать из киновари. Ртуть употребляли в Египте, Индии, Месопотамии и Китае; она считалась важнейшим исходным веществом в операциях священного тайного искусства по изготовлению препаратов, продлевающих жизнь и именуемых пилюлями бессмертия. В IV - Ш вв. до н.э. о ртути как о жидком серебре (от греч. вода и серебро) упоминают Аристотель и Теофраст. Позднее Диоскорид описал получение ртути из киновари путем нагревания последней с углем. Ртуть считали основой металлов, близкой к золоту и поэтому называли меркурием (Mercurius), по имени ближайшей к солнцу (золоту) планеты Меркурий. С другой стороны, полагая, что ртуть представляет собой некое состояние серебра, древние люди именовали ее жидким серебром (откуда произошло лат. Hydrargirum). Подвижность ртути вызвала к жизни другое название - живое серебро (лат. Argentum vivum); немецкое слово Quecksilber происходит от нижнесаксонского Quick (живой) и Silber (серебро). Интересно, что болгарское обозначение ртути - живак - и азербайджанское - дживя - заимствованы, вероятно, от славян.

80 элемент таблицы Менделеева В эллинистическом Египте и у греков употреблялось название скифская вода, что позволяет думать о вывозе ртути в какой-то период времени из Скифии. В арабский период развития химии возникла ртутно-серная теория состава металлов, согласно которой ртуть почиталась матерью металлов, а сера (сульфур) их отцом. Сохранилось множество тайных арабских названий ртути, что свидетельствует о ее значении в алхимических тайных операциях. Усилия арабских, а позднее и западноевропейских алхимиков сводились к так называемой фиксации ртути, т. е. к превращению ее в твердое вещество. По мнению алхимиков, получающееся при этом чистое серебро (философское) легко превращалось в золото. Легендарный Василий Валентин (XVI в.) основал теорию трех начал алхимиков (Tria principia) - ртути, серы и соли; эту теорию развил затем Парацельс. В подавляющем большинстве алхимических трактатов, излагающих способы трансмутации металлов, ртуть стоит на первом месте либо как исходный металл для любых операций, либо как основа философского камня (философская ртуть).

Свойства атома Название, символ, номер

Ртуть / Hydrargyrum (Hg), 80

Атомная масса
(молярная масса )

200,592(3) а. е. м. (г /моль )

Электронная конфигурация

4f 14 5d 10 6s 2

Радиус атома

157 пм

Химические свойства Ковалентный радиус

149 пм

Радиус иона

(+2e) 110 (+1e) 127 пм

Электроотрицательность

2,00 (шкала Полинга)

Электродный потенциал

Hg←Hg 2+ 0,854 В

Степени окисления Энергия ионизации
(первый электрон)

1 006,0 (10,43) кДж /моль (эВ )

Термодинамические свойства простого вещества Плотность (при н. у. )

13,546 (20 °C) г/см³

Температура плавления

234,32 K (-38.83 °C)

Температура кипения

629,88 K (356,73 °C)

Уд. теплота плавления

2,295 кДж/моль

Уд. теплота испарения

58,5 кДж/моль

Молярная теплоёмкость

27,98 Дж/(K·моль)

Молярный объём

14,8 см ³/моль

Кристаллическая решётка простого вещества Структура решётки

ромбоэдрическая

Параметры решётки

a hex =3,464 с hex =6,708 Å

Отношение c/a Температура Дебая

100,00 K

Прочие характеристики Теплопроводность

(300 K) 8,3 Вт/(м·К)

Физические свойства ртути

Металлическая ртуть
Переливание ртути из сосуда в сосудРтуть — единственный металл, который находится в жидком состоянии при комнатной температуре. Температура плавления составляет 234,32 K (-38,83 °C), кипит при 629,88 K (356,73 °C). Обладает свойствами диамагнетика. Образует со многими металлами жидкие и твёрдые сплавы — амальгамы. Стойкие к амальгамированию металлы: V, Fe, Mo, Cs, Nb, Ta, W.

Плотность ртути при нормальных условиях — 13 500 кг/м3

Температура в °С ρ, 10 3 кг/м 3 Температура в °С ρ, 10 3 кг/м 3
0 13,5951 50 13,4723
5 13,5827 55 13,4601
10 13,5704 60 13,4480
15 13,5580 65 13,4358
20 13,5457 70 13,4237
25 13,5335 75 13,4116
30 13,5212 80 13,3995
35 13,5090 90 13,3753
40 13,4967 100 13,3514
45 13,4845 300 12,875

Ртуть всегда вызывала интерес не только учёных. Этому веществу раньше приписывали магические свойства. Считалось, что из ртути можно даже добывать золото. Скорее всего, этот и другие мифы возникли из-за того, что ртуть является необычным веществом. Она представляет собой единственный металл, который в нормальных условиях находится в жидком состоянии . Кроме того, из всех жидкостей ртуть – самая тяжёлая.

Из чего состоит ртуть и откуда она берётся?

Долгое время учёные сомневались в том, что это вещество относится к металлам. Хотя все его свойства свидетельствуют в пользу этого. Всё же учёные никак не могли поверить в то, что металл может быть жидким в нормальных условиях.

По своей структуре ртуть напоминает воду. Она тоже состоит из водорода и кислорода. Если описать строение этого вещества более наглядно, то можно сказать, что структура ртути представляет собой кислородную сетку с включениями водорода. Благодаря такой структуре ртуть относится к жидким металлам. В нормальных условиях этот металл медленно испаряется.

Появляется это необычное вещество в недрах земли под высоким давлением. Затем ртуть перемещается в верхние слои земной коры и оседает в микротрещинах пород. Хотя процесс образования ртути пока до конца неизвестен.

С ртутью будьте осторожны!

Необходимо знать, что при вдыхании паров этого жидкого металла происходит отравление (интоксикация) организма. Если в организм попало очень много частиц ртути, то могут наблюдаться следующие признаки отравления: тошнота, рвота, понос, кровоточивость и даже омертвление дёсен с выпадением зубов, воспаление лёгких. Кроме того, возможны острые боли в животе и головные боли. Если паров, которые попали в организм, оказалось очень много, то может даже наступить смерть. Так что с этим металлом шутки плохи.

Для чего нужна ртуть?

Ртуть используется очень широко. Она нашла своё применение в термометрах, лампах дневного света, кварцевых лампах, в стоматологии. Наверное, чаще всего жидкий металл используется в измерительных приборах, например, в аппаратуре для определения атмосферного давления (барометре).

Как работает ртутный термометр?

Если жидкость в трубочке холодная, то ее молекулы расположены в непосредственной близости друг от друга. При этом жидкость не занимает много места и практически вся находится в крохотной колбочке на конце термометра. Но если оставить термометр под прямыми солнечными лучами, вставить под мышку или сжать в ладошках, жидкость внутри термометра будет нагреваться, и ее молекулы начнут активно перемещаться и отталкиваться друг от друга. Им уже не хватает места внутри колбочки, и они начинают подниматься по трубке. Чем теплее окружающая среда, тем выше поднимается жидкость. Несмотря на точность ртутных термометров, они постепенно вытесняются электронными.

Вряд ли нужно доказывать, что ртуть – металл своеобразный. Это очевидно хотя бы потому, что ртуть – единственный металл, находящийся в жидком состоянии в условиях, которые мы называем нормальными. Почему ртуть жидкая – вопрос особый. Но именно это свойство, вернее сочетание свойств металла и жидкости (самой тяжелой жидкости!), определило особое положение элемента №80 в нашей жизни. О ртути можно рассказывать много: жидкому металлу посвящены десятки книг. Этот же рассказ – в основном о многообразии применения ртути и ее соединений.

Причастность ртути к славному клану металлов долгое время была под сомнением. Даже Ломоносов колебался, можно ли считать ртуть металлом, несмотря на то, что и в жидком состоянии она обладает почти полным комплексом металлических свойств: тепло- и электропроводностью, металлическим блеском и так далее. При охлаждении ртути до –39°C становится совсем очевидным, что она – одно из «светлых тел, которые ковать можно».

Жидкий металл

Ртуть оказала науке огромные услуги. Как знать, насколько задержался бы прогресс техники и естественных наук без измерительных приборов – термометров, манометров, барометров и других, действие которых основано на необыкновенных свойствах ртути. Какие это свойства?

Во-первых, ртуть – жидкость.

Во-вторых, тяжелая жидкость – в 13,6 раза тяжелее воды.

В-третьих, у ртути довольно большой коэффициент температурного расширения – всего в полтора раза меньше, чем у воды, и на порядок, а то и два больше, чем у обычных металлов.

Есть и «в-четвертых», «в-пятых», «в-двадцатых», но вряд ли нужно перечислять все.

Еще любопытная деталь: «миллиметр ртутного столба» – не единственная физическая единица, связанная с элементом №80. Одно из определений ома, единицы электрического сопротивления, – это сопротивление столбика ртути длиной 106,3 см и сечением 1 мм 2 .

Все это имеет отношение не только к чистой науке. Термометры, манометры и другие приборы, «начиненные» ртутью, давно стали принадлежностью не только лабораторий, но и заводов. А ртутные лампы, ртутные выпрямители! Все то же уникальное сочетание свойств открыло ртути доступ в самые разные отрасли техники, в том числе в радиоэлектронику, в автоматику.

Ртутные выпрямители, например, долгое время были наиболее важным и мощным, наиболее широко применяемым в промышленности типом выпрямителей электрического тока. До сих пор их используют во многих электрохимических производствах и на транспорте с электрической тягой, хотя в последние годы их постепенно вытесняют более экономичные и безвредные полупроводниковые выпрямители.

Современная боевая техника тоже использует замечательные свойства жидкого металла.

К примеру, одна из главных деталей взрывателя для зенитного снаряда – это пористое кольцо из железа или никеля. Поры заполнены ртутью. Выстрел – снаряд двинулся, он приобретает все большую скорость, все быстрее вращается вокруг своей оси, и тяжелая ртуть выступает из пор. Она замыкает электрическую цепь – взрыв.

Нередко с ртутью можно встретиться и там, где меньше всего ожидаешь. Ртутью иногда легируют другие металлы. Небольшие добавки элемента №80 увеличивают твердость сплава свинца со щелочноземельными металлами. Даже при паянии бывает подчас нужна ртуть: припой из 93% свинца, 3% олова и 4% ртути – лучший материал для пайки оцинкованных труб.

Амальгамы

Еще одно замечательное свойство ртути: способность растворять другие металлы, образуя твердые или жидкие растворы – амальгамы. Некоторые из них, например амальгамы серебра и кадмия, химически инертны и тверды при температуре человеческого тела, но легко размягчаются при нагревании. Из них делают зубные пломбы.

Амальгаму таллия, затвердевающую только при –60°C, применяют в специальных конструкциях низкотемпературных термометров.

Старинные зеркала были покрыты не тонким слоем серебра, как это делается сейчас, а амальгамой, в состав которой входило 70% олова и 30% ртути, В прошлом амальгамация была важнейшим технологическим процессом при извлечении золота из руд. В XX столетии она не выдержала конкуренции и уступила более совершенному процессу – цианированию. Однако старый процесс находит применение и сейчас, главным образом при извлечении золота, тонко вкрапленного в руду.

Некоторые металлы, в частности железо, кобальт, никель, практически не поддаются амальгамации. Это позволяет транспортировать жидкий металл в емкостях из простой стали. (Особо чистую ртуть перевозят в таре из стекла, керамики или пластмассы.) Кроме железа и его аналогов, не амальгамируются тантал, кремний, рений, вольфрам, ванадий, бериллий, титан, марганец и молибден, то есть почти все металлы, применяемые для легирования стали. Это значит, что и легированной стали ртуть нестрашна.

Зато натрий, например, амальгамируется очень легко. Амальгама натрия легко разлагается водой. Эти два обстоятельства сыграли и продолжают играть очень важную роль в хлорной промышленности.

При выработке хлора и едкого натра методом электролиза поваренной соли используют катоды из металлической ртути. Для получения тонны едкого натра нужно от 125 до 400 г элемента №80. Сегодня хлорная промышленность – один из самых массовых потребителей металлической ртути.

Ртутный пар

Ртуть закипает при 357°C, т.е. тогда, когда большинство металлов еще далеки от точки плавления. Об этом знали еще в древности, и на этом свойстве издавна основывались методы извлечения металлической ртути из руд. Самым первым способом был обжиг киновари с конденсацией паров ртути на холодных предметах и, в частности, на свежесрубленных зеленых деревьях. Позднее стали использовать реторты из керамики и чугуна. Начиная с 1842 г., ртуть из руд извлекается в отражательных печах, а с 1857 г. – в каскадных. В XX в. к ним присоединились механические многоподовые, а также вращающиеся трубчатые печи.

В киновари 86,2% ртути, но в рудах, считающихся богатыми, на ее долю в среднем приходится 8%. В бедных рудах ртути не больше 0,12%. Такие руды приходится обязательно обогащать тем или иным путем, «отсеивая» бесполезные компоненты.

И сейчас из руд и концентратов ртуть извлекают главным образом пирометаллургическими методами. Обжиг происходит в шахтных, отражательных или трубчатых печах при 700...750°C. Такая высокая температура нужна для того, чтобы киноварь окислялась, а не возгонялась, и чтобы процесс окисления HgS + O 2 → Hg + SO 2 шел до конца. В результате обжига получается парообразная ртуть, которую превращают в жидкий металл в специальных аппаратах – конденсаторах.

Хотя газы, образующиеся при обжиге, проходят несколько стадий очистки, конденсируется не столько металлическая ртуть, сколько так называемая ступпа – тонкодисперсная смесь, состоящая из мельчайших капелек ртути и мелкой пыли сложного химического состава. В ступпе есть соединения как самой ртути, так и других элементов. Ее подвергают отбивке, стремясь разрушить пылевые пленки, мешающие слиянию микроскопически малых капелек жидкого металла. Ту же цель преследует и повторная дистилляция. Но извлечь из ступпы всю ртуть так и не удается, и это одна из нерешенных и сегодня проблем металлургии ртути. А ведь это один из самых старых разделов металлургии.

Способность ртути испаряться при сравнительно низкой температуре была использована для нанесения золотых покрытий на неблагородные металлы. Именно таким способом позолочен купол Исаакиевского собора в Ленинграде. Сейчас этот способ вышел из употребления из-за ядовитости ртутных паров. Электрохимические способы золочения более совершенны и безопасны.

Но видеть в ртутных парах только яд – неверно. Они могут принести и приносят много пользы.

В 1936 г. появилось сообщение о том, что одна из зарубежных нефтяных фирм приобрела ртутный рудник. Оказалось, что ртуть нужна этой фирме для организации парортутной установки, предназначенной для очистки нефти. В наше время ртутные пары все шире используются в нефтеперерабатывающей промышленности: они помогают очень точно регулировать температуру процессов, что крайне важно для нефтепереработки.

Еще раньше, в начале XX в., внимание теплотехников привлекало сообщение о работах доктора Эммета из США. Эммет первым попытался использовать в паровых котлах не воду, а ртуть. Его опытная установка мощностью 2000 л.с. работала и потребляла на 45% меньше топлива, чем обычный паровой котел с генератором. Конечно, не обошлось без дискуссий: ртуть не вода, из реки ее не зачерпнешь! Возражений против использования ртути в паровых котлах было больше чем достаточно. Исследования, однако, продолжались.

Весьма успешной была работа советских научно-исследовательских институтов по проблеме использования ртутного котла и турбины. Были доказаны экономичность ртутно-паровых турбин и возможность создания так называемого ртутно-водяного бинарного цикла, в котором тепло конденсирующегося ртутного пара используется в специальном конденсаторе-испарителе для получения водяного пара. А до этого ртутный пар успевает покрутить вал генератора. Полученный водяной пар приводит в движение второй электротурбогенератор... В подобной системе, работающей только на водяном паре, удается в лучшем случае достигнуть КПД 30%. Теоретический же КПД ртутно-парового цикла (45%) намного выше, чем у газовой турбины (18...20%) и дизеля (35...39%). В 50-х годах в мире существовало уже несколько таких энергетических установок мощностью до 20 тыс. киловатт. Дальше дело, к сожалению, не пошло, главным образом из-за нехватки ртути.

Вакуумные установки в наше время очень важны для науки и промышленности. И здесь ртуть встречается не только как заполнитель трубок вакуумметра. Еще в 1916 г. Ирвинг Ленгмюр создал вакуум-насос, в котором испарялась и конденсировалась ртуть. При этом в системе, связанной с насосом, создавалось остаточное давление в сотни миллионов раз меньше атмосферного.

Современные ртутные диффузионные насосы дают еще большее разрежение: стомиллионные доли миллиметра ртутного столба.

Изучение ультрафиолетовых лучей продвигалось медленно до тех пор, пока не был создан искусственный источник этих лучей. Им оказались пары ртути в вакууме. Когда через ртутные пары проходит электрический ток, они испускают видимое голубое свечение и много ультрафиолетовых лучей. Чем выше температура паров ртути, тем интенсивнее излучение ультрафиолетовых лучей в ртутно-кварцевой лампе.

Видимое свечение паров ртути использовано в конструкциях мощных ламп освещения. Лампы дневного света – это разрядные трубки, в которых находятся инертные газы и пары ртути. А что такое «холодный свет», пояснять, вероятно, излишне. Из каждого рубля, который мы платим «за свет», на долю действительно светового излучения приходятся лишь четыре копейки. Остальные 96 – за ненужное тепло, излучаемое обычными электролампами. Лампы дневного света намного экономичнее.

Соединения ртути

Первым из них, несомненно, следует назвать киноварь HgS. Благодаря ей человек познакомился с ртутью много веков назад. Способствовали этому и ее ярко-красный цвет, и простота получения ртути из киновари. Кристаллы киновари иногда бывают покрыты тонкой свинцово-серой пленкой. Это – метациннабарит, о нем ниже. Достаточно, однако, провести по пленке ножом, и появится ярко-красная черта.

В природе сернистая ртуть встречается в трех модификациях, отличающихся кристаллической структурой. Помимо общеизвестной киновари с плотностью 8,18, существуют еще и черный метациннабарит с плотностью 7,7 и так называемая бета-киноварь (ее плотность 7,2). Русские мастера, приготовляя в старину из киноварной руды красную краску, особое внимание обращали на удаление из руды «искр» и «звездочек». Они не знали, что это аллотропические изменения той же самой сернистой ртути; при нагревании без доступа воздуха до 386°C эти модификации превращаются в «настоящую» киноварь.

Некоторые соединения ртути меняют окраску при изменении температуры. Таковы красная окись ртути HgO и медно-ртутный иодид HgI 2 · 2CuI.

Все соли ртути ядовиты, и это требует большой осторожности при работе с ними. Сталкиваться же с соединениями ртути приходится людям разных профессий. Ртутная соль хромовой кислоты, например, – замечательная зеленая краска по керамике. Сильный яд сулема HgCl 2 , но она крайне нужна в гальванопластике, в производстве оловянных и цинковых сплавов тонкой структуры, в процессах гравирования и литографии, даже в фотографии. Некоторые соли ртути, в том числе и сулема, применяются в сухих электрических батареях.

Промышленный катализ тоже не обходится без соединений ртути. Один из способов получения уксусной кислоты и этилового спирта основан на реакции, открытой русским ученым М.Г. Кучеровым. Сырьем служит ацетилен. В присутствии катализаторов – солей двухвалентной ртути – он реагирует с водяным паром и превращается в уксусный альдегид. Окисляя это вещество, получают уксусную кислоту, восстанавливая – спирт. Те же соли помогают получать из нафталина фталевую кислоту – важный продукт основного органического синтеза.

Резко возрастает потребление ртути в годы войны. Жидкий металл необходим для производства «гремучей ртути» Hg(ONC) 2 первого известного технике инициирующего взрывчатого вещества. Хотя сейчас на вооружении имеются и другие подобные ВВ (азид свинца, например), «гремучая ртуть» продолжает оставаться одним из важнейших материалов для заполнения капсюлей детонаторов.

Ядовитость соединений ртути ограничивает их применение, но иногда это свойство может оказаться полезным. Ртутными красками покрывают днища кораблей, чтобы они не обрастали ракушками. Иначе корабль снижает скорость, перерасходуется топливо. Самая известная из красок такого типа делается на основе кислой ртутной соли мышьяковистой кислоты HgHAsO 4 . Правда, в последнее время для этой цели применяют и синтетические красители, в составе которых ртути нет.

Хотя все ртутные соли ядовиты, многие из них используются медициной, и, пожалуй, это одно из самых древних их применений. Сулема – яд, но и одно из первых антисептических средств. Цианид ртути использовали в производстве антисептического мыла. Желтую окись ртути* до сих пор применяют при лечении глазных и кожных заболеваний. Каломель Hg 2 Cl 2 , в молекуле которой по сравнению с молекулой сулемы есть один «лишний» атом ртути, – общеизвестное слабительное средство. Медицина использует также фосфорнокислые соли ртути, ее сульфат, иодид и другие. В наше время большинство неорганических соединений ртути постепенно вытесняются из медицины ртутными же органическими соединениями, неспособными к легкой ионизации и поэтому не столь токсичными и меньше раздражающими ткани. Органические антисептики на основе соединений ртути пригодны даже для обработки слизистых оболочек. Они дают не меньший лечебный эффект, чем неорганические соединения.

* При очень тонком измельчении красная окись ртути HgO приобретает желтый цвет. Эта модификация получается и при выпадении окиси ртути в осадок.

Медицина применяет не только соединения, но и самую ртуть и ее пары. Начиная обследование, врач в первую очередь использует «градусник» – ртутный термометр. Ртутные манометры работают в аппаратах для измерения кровяного давления. В каждой больнице, в физиотерапевтических кабинетах поликлиник ультрафиолетовые лучи, полученные от ртутно-кварцевых ламп, глубоко прогревают ткани, помогают лечить катары, воспаления, даже туберкулез – ведь ультрафиолет губителен для многих микроорганизмов.

Ртуть – древнейший, удивительный и, можно сказать, «нестареющий» металл. Известный с незапамятных времен, он и в современной технике, в медицине, в быту находит все новые применения.

У древних народов

История не сохранила имени древнего металлурга, первым получившего ртуть, – это было слишком давно, за много веков до нашей эры. Известно только, что в Древнем Египте металлическую ртуть и ее главный минерал, киноварь, использовали еще в III тысячелетии до н.э. Индусы узнали ртуть во II...I вв. до н.э. У древних китайцев киноварь пользовалась особой славой, и не только как краска, но и как лекарственное средство. Ртуть и киноварь упоминаются в «Естественной истории» Плиния Старшего: значит, о них знали и римляне. Плиний свидетельствует также, что римляне умели превращать киноварь в ртуть.

Все металлы – из ртути... В этом были убеждены алхимики древности и средневековья. Разницу в свойствах металлов они объясняли присутствием в металле одного из четырех элементов Аристотеля. (Напомним, что этими элементами были: огонь, воздух, вода и земля.) Характерно, что подобных взглядов придерживались и многие видные ученые далекого прошлого. Так, великий таджикский врач и химик Авиценна (980...1037 гг. н.э.) тоже считал, что все металлы произошли от ртути и серы.

Рассказывает Лавуазье

«В эту реторту я ввел 4 унции очень чистой ртути, затем путем всасывания посредством сифона, который я ввел под колокол, я поднял ртуть до определенного уровня и тщательно отмерил этот уровень полоской приклеенной бумаги, точно наблюдая при этом показания барометра и термометра.

Закончив таким образом все приготовления, я зажег огонь в печке и поддерживал его почти без перерыва 12 дней, причем ртуть нагревалась до температуры, необходимой для ее кипения. В течение всего первого дня не произошло ничего примечательного: ртуть, хотя и кипевшая, находилась в состоянии непрерывного испарения и покрывала внутренние стенки реторты капельками, сначала очень мелкими, но постепенно увеличивающимися при достижении известного объема падавшими от собственной тяжести на дно реторты и соединявшимися с остальной ртутью.

На второй день я начал замечать плавающие на поверхности ртути небольшие красные частички, которые в течение четырех или пяти дней увеличивались в количестве и объеме, после чего перестали увеличиваться и остались в абсолютно неизменном виде. По прошествии 12 дней, видя, что окаливание ртути нисколько больше не прогрессирует, я потушил огонь и дал остыть прибору. Объем воздуха, содержащегося как в реторте, так и в ее шейке и в свободной части колокола... был до опыта равен приблизительно 50 куб. дюймам. По окончании операции тот же объем при том же давлении и той же температуре оказался равным всего лишь 42...43 дюймам; следовательно, произошло уменьшение приблизительно на одну шестую. С другой стороны, тщательно собрав образовавшиеся на поверхности красные частицы и отделив их, насколько было возможно, от жидкой ртути, в которой они плавали, я нашел их вес равным 45 гранам...

Воздух, оставшийся после этой операции и уменьшавшийся вследствие прокаливания в нем ртути до пяти шестых своего объема, не был годен больше ни для дыхания, ни для горения; животные, вводимые в него, умирали в короткое время, горящие же предметы потухали в одно мгновение, как если бы их погружали в воду. С другой стороны, я взял 45 гранов образовавшегося во время опыта красного вещества и поместил его в маленькую стеклянную реторту, к которой был присоединен прибор, приспособленный для приема могущих выделиться жидких и воздухообразных продуктов; зажегши огонь в печке, я заметил, что по мере того как красное вещество нагревалось, его цвет становился все более интенсивным. Когда затем реторта начала накаляться, красное вещество начало мало-помалу уменьшаться в объеме и через несколько минут оно совершенно исчезло; в то же время в небольшом приемнике собралось 41 1 / 2 грана жидкой ртути, а под колокол прошло 7...8 куб. дюймов упругой жидкости*, гораздо более способной поддерживать горение и дыхание животных, чем атмосферный воздух...

* Так во времена Лавуазье называли газы.

Я дал ему сначала название в высшей степени легко вдыхаемого или весьма удобовдыхаемого воздуха: впоследствии это название было заменено названием «жизненный» или «живительный воздух».

Антуан Лоран Лавуазье.
«Анализ атмосферного воздуха». «Записки Французской академии наук», 1775.

Ртуть и открытия Джозефа Пристли

Но не Лавуазье был первым ученым, получившим кислород из красной окиси ртути. Карл Шееле еще в 1771 г. разложил это вещество на ртуть я «огненный воздух», а выдающийся английский химик Джозеф Пристли первым в мире исследовал кислород. 1 августа 1774 г., разложив окисел нагреванием, Пристли внес в полученный «воздух» горящую свечу и увидел, что пламя приобрело необычную яркость.

В этом воздухе свеча сгорала быстрее. Ярко вспыхнув, сгорали в нем и раскаленные кусочки каменного угля, и железные проволочки... За этим опытом последовали другие, и в итоге Пристли определил важнейшие качества «дефлогистонированного воздуха».

Джозеф Пристли сделал еще много важных открытий, и почти во всех его работах использовалась ртуть. Это она помогла Пристли открыть газообразный хлористый водород. Взаимодействие поваренной соли с серной кислотой и до Пристли наблюдали многие химики. Но все они пытались собрать образующийся газ над водой, и получалась соляная кислота. Пристли заменил воду ртутью... Таким же образом он получил чистый газообразный аммиак из нашатырного спирта. Затем оказалось, что два открытых им газа – NH 3 и HCl – способны вступать в реакцию между собой и превращаться в белые мелкие кристаллы. Так впервые в лабораторных условиях был получен хлористый аммоний. Сернистый газ тоже был открыт Пристли и тоже был собран над ртутью.

Выручил ртутный катод

В 1807 г., разлагая щелочи электрическим током, выдающийся английский ученый Дэви впервые получил элементарные натрий и калий. Его опыты повторил крупнейший шведский химик Берцелиус, но источник тока – вольтов столб, которым он располагал, был слишком слаб, и воспроизвести результаты Дэви Берцелиусу поначалу не удалось. Тогда он решил в качестве катода использовать ртуть и... получил щелочные металлы с меньшими затратами энергии. А тем временем Дэви пытался выделить с помощью электричества и щелочноземельные металлы. При этом он пережег свою огромную батарею и об этой неудаче написал Берцелиусу. Тот посоветовал ему воспользоваться ртутным катодом, и в 1808 г. Дэви получил амальгаму кальция, из которой выделить металл уже не составляло труда. В том же году (и тем же способом) Дэви выделил в элементарном виде барий, стронций и магний.

Первый сверхпроводник

Спустя почти полтора столетия после опытов Пристли и Лавуазье ртуть оказалась сопричастна еще к одному выдающемуся открытию, на этот раз в области физики. В 1911 г. голландский ученый Гейке Камерлинг-Оннес исследовал электропроводность ртути при низкой температуре. С каждым опытом он уменьшал температуру, и когда она достигла 4,12°K, сопротивление ртути, до этого последовательно уменьшавшееся, вдруг исчезло совсем: электрический ток проходил по ртутному кольцу, не затухая. Так было открыто явление сверхпроводимости, и ртуть стала первым сверхпроводником. Сейчас известны десятки сплавов и чистых металлов, приобретающих это свойство при температуре, близкой к абсолютному нулю.

Как очистить ртуть

В химических лабораториях часто возникает необходимость очистить жидкий металл. Метод, описанный в этой заметке, пожалуй, самый простой из надежных и самый надежный из простых. На штативе крепят стеклянную трубку диаметром 1...2 см; нижний конец трубки оттянут и загнут. В трубку заливают разбавленную азотную кислоту примерно с 5% нитрата закисной ртути Hg 2 (NO 3) 2 . Сверху в трубку вставляют воронку с бумажным фильтром, в дне которого иголкой проделано небольшое отверстие. Воронку заполняют загрязненной ртутью. На фильтре она очищается от механических примесей, а в трубке – от большей части растворенных в ней металлов. Как это происходит? Ртуть – благородный металл, и примеси, например медь, вытесняют ее из Hg 2 (NO 3) 2 ; часть примесей просто растворяется кислотой. Очищенная ртуть собирается в нижней части трубки и под действием собственной тяжести передавливается в приемный сосуд. Повторив эту операцию несколько раз, можно достаточно полно очистить ртуть от примеси всех металлов, стоящих в ряду напряжений левее ртути.

Очистить ртуть от благородных металлов, например золота и серебра, намного сложнее. Чтобы разделить их, применяют перегонку в вакууме.

Не только жидкое состояние «роднит» ртуть с водой. Теплоемкость ртути, как и воды, с ростом температуры (от точки плавления до +80°C) последовательно уменьшается и лишь после определенного температурного «порога» (после 80°C) начинает медленно расти. Если охлаждать ртуть очень медленно, ее, как и воду, можно переохладить. В переохлажденном состоянии жидкая ртуть существует при температуре ниже –50°C, обычно же она замерзает при –38,9°C. Кстати, впервые ртуть была заморожена в 1759 г. петербургским академиком И.А. Брауном.

Одновалентной ртути нет!

Это утверждение многим покажется неверным. Ведь еще в школе учат, что, подобно меди, ртуть может проявлять валентности 2+ и 1+. Широко известны такие соединения, как черная закись Hg 2 O или каломель Hg 2 Cl 2 . Но ртуть здесь лишь формально одновалентна. Как показали исследования, во всех подобных соединениях содержится группировка из двух атомов ртути: –Hg 2 – или –Hg–Hg–. Оба атома двухвалентны, но одна валентность каждого из них затрачена на образование цепочки, подобной углеродным цепям многих органических соединений. Ион Hg 2+ 2 нестоек, нестойки и соединения, в которые он входит, особенно гидроокись и карбонат закисной ртути. Последние быстро разлагаются на Hg и HgO и соответственно H 2 O или CO 2 .

Яд и противоядие

Я худшую смерть
предпочту работе
на ртутных рудниках,
где крошатся зубы во рту...

Р. Киплинг

Пары ртути и ее соединения действительно весьма ядовиты. Жидкая ртуть опасна прежде всего своей летучестью: если хранить ее открытой в лабораторном помещении, то в воздухе создастся парциальное давление ртути 0,001 мм. Это много, тем более что предельно допустимая концентрация ртути в промышленных помещениях 0,01 мг на кубический метр воздуха.

Степень токсического действия металлической ртути определяется прежде всего тем, какое количество ее успело прореагировать в организме, прежде чем ее вывели оттуда, т.е. опасна не сама ртуть, а ее соединения.

Острое отравление солями ртути проявляется в расстройстве кишечника, рвоте, набухании десен. Характерен упадок сердечной деятельности, пульс становится редким и слабым, возможны обмороки. Первое, что необходимо сделать в такой ситуации, это вызвать у больного рвоту. Затем дать ему молока и яичных белков. Ртуть выводится из организма в основном почками.

При хроническом отравлении ртутью и ее соединениями появляются металлический привкус во рту, рыхлость десен, сильное слюнотечение, легкая возбудимость, ослабление памяти. Опасность такого отравления есть во всех помещениях, где ртуть находится в контакте с воздухом. Особенно опасны мельчайшие капли разлитой ртути, забившиеся под плинтусы, линолеум, мебель, в щели пола. Общая поверхность маленьких ртутных шариков велика, и испарение идет интенсивнее. Поэтому случайно разлитую ртуть необходимо тщательно собрать. Все места, в которых могли задержаться малейшие капельки жидкого металла, необходимо обработать раствором FeCl 3 , чтобы связать ртуть химически.

Ртуть в космосе

Космические аппараты нашего времени требуют значительных количеств электроэнергии. Регулировка работы двигателей, связь, научные исследования, работа системы жизнеобеспечения – все это требует электричества... Пока основными источниками тока служат аккумуляторы и солнечные батареи. Энергетические потребности космических аппаратов растут и будут расти. Космическим кораблям недалекого будущего понадобятся электростанции на борту. В основе одного из вариантов таких станций – ядерный турбинный генератор. Во многом он подобен обычной тепловой электростанции, но рабочим телом в нем служит не водяной пар, а ртутный. Разогревает его радиоизотопное горючее. Цикл работы такой установки замкнутый: ртутный пар, пройдя турбину, конденсируется и возвращается в бойлер, где опять нагревается и вновь отправляется вращать турбину.

Изотопы ртути

Природная ртуть состоит из смеси семи стабильных изотопов с массовыми числами 196, 198, 199, 200, 201, 202 и 204. Наиболее распространен самый тяжелый изотоп: его доля – почти 30%, точнее, 29,8. Второй по распространенности – изотоп ртуть-200 (23,13%). А меньше всего в природной смеси ртути-196 – всего 0,146%.

Из радиоактивных изотопов элемента №80, а их известно 11, практическое значение приобрели только ртуть-203 (период полураспада 46,9 суток) и ртуть-205 (5,5 минуты). Их применяют при аналитических определениях ртути и изучении ее поведения в технологических процессах.

Самые крупные месторождения – в Европе

Ртуть – один из немногих металлов, крупнейшие месторождения которых находятся на европейском материке. Наиболее крупными месторождениями ртути считаются Альмаден (Испания), Монте-Амьята (Италия) и Идрия (Югославия).

Ртуть, благодаря своим удивительным свойствам, занимает особое место среди других металлов и широко используется в науке и технике.

Свойство ртути оставаться в жидком состоянии в интервале температур от 357,25 до -38,87° С является уникальным. При невысо­ких температурах ртуть инертна по отношению ко многим агрессив­ным жидкостям и газам, в том числе и к кислороду воздуха. Она практически не взаимодействует с концентрированной серной и соляной кислотами; ее используют при работе, например, с такими ядови­тыми и агрессивными веществами, как бороводороды.

Ртуть применяется в электротехнике, металлургии, в медицине, химии, в строительном деле, сельском хозяйстве и многих других областях; особенно значительна ее роль в лабораторной практике.

Общеизвестно применение ртути в манометрах, вакуумметрах, термометрах, в многочисленных конструкциях затворов, прерывате­лей, высоко вакуумных насосах, всевозможных реле, терморегулиру­ющих устройствах и пр.

Металлическую ртуть используют в качестве балластной, термостатирующей и уплотняющей жидкости, а пары ртути - как защитную атмосферу при нагревании металлов.

Ртуть широко применяют при электрохимических исследованиях и нормальных элементах Кларка и Вестона, обладающих стабильными значениями ЭДС, в электрометрах Липпмана, которые исполь­зуются для изучения строения двойного электрического слоя, зави­симости коэффициента трения от потенциала, межфазного поверх­ностного натяжения, смачиваемости и других явлений, в ртутно-сульфатных, ртутно-фосфатных, ртутно-окисных и ртутно-иодистых электродах сравнения, применяемых для измерения элект­родных потенциалов.

В 1922 г. Я. Гейровский разработал полярографический метод анализа с применением ртутного капельного электрода. Этим методом можно определять малые концентрации веществ (10 -3 - 10 -4 моль/л), причем замена в полярографическом анализе ртути амальгамами, использование метода «амальгамной полярографии с накоплением», позволяют расширить возможности полярографии и повысить точность измерения на 3-4 порядка.

Ртуть и амальгамы успешно используют при амперометрическом и. потенцпометрическом титровании кулонометрическом ана­лизе, а также при электролизе на ртутном катоде.

Ртуть часто применяют в качестве вспомогательного вещества при изучении металлических систем. Например, с ее помощью были уточнены диаграммы состояния бинарных сплавов никель - цинк, никель - олово, железо - марганец, хром - цинк и др.Она при­меняется в качестве растворителя для получения полупроводнико­вых материалов, в частности, для выращивания при низких темпера­турах из насыщенных ртутных растворов a-олова монокристаллов серого олова. Пластинки, изготовленные из серого олова, обладают большой чувствительностью к инфракрасному излучению - позволяют обнаруживать электромагнитные волны длиною до 15 мкм.

Ртутные контакты используют для прецизионного определения удельного сопротивления кремния.

С помощью ртути изучают явления смачивания, пластификации и охрупчивания цинка, олова, меди, свинца, золота, латуни, алюминия, стали и титановых сплавов металловедении ртуть применяют для травления, для изучения диффузии.

Ее широко применяют для определения пористости активированных углей, силикагелей, керамических изделий и металлических покрытий. Известны поромегры, работающие при давлениях до 3500 aт и позволяющие определять поры диаметром до несколь­ких А.

Ртуть используют также для точной калибровки мерной посуды, бюреток, пипеток и пикнометров, для определения диаметра капиллярных трубок, в качестве компрессионной жидкости при опре­делении газов в биологических жидкостях, в газоанализаторах различных систем, волюмометрах и т. д.

Сравнительно низкое давление пара при температурах, превыша­ющих 500° С, дает возможность применять ртуть в качестве рабочего тела в энергетических установках, использующих для нагревания тепло, выделяющееся при радиоактивном распаде, а также в мощ­ных бинарных установках промышленного типа, в которых для генерации электрической энергии на первой ступени используют ртутно-паровые турбины, а на второй - турбины, работающие на водяном паре 46-Б2 . Коэффициент полезного действия бинарных установок превосходит КПД любых тепловых двигателей и даже таких совершенных конструкций, на двигатели внутреннего сгорания.

В ядерных реакторах, наряду с водою все шире начинают при­менять для отвода тепла жидкометаллические теплоносители, вклю­чая и ртуть. При этом значительно повышается КПД атомных установок и устраняются трудности, связанные с применением воды и водяного пара под высоким давлением.

Ртуть в качестве теплоносителя часто используют в химической промышленности, например, в процессе сульфирования нафталина, для дистилляции 2-нафтола, для разгонки смазочных масел, при получении ангидрида фталевой кислоты, при проведении крекинг-процесса и пр. В этом случае создается возможность про­водить процессы при температурах до 800° С и одновременно обеспе­чивать равномерный нагрев всей реакционной массы. Ртуть также может служить катализатором, например, при получении уксусной кислоты.

В металлургии известен способ литья по расправляемым ртутным моделям. Отдельные части модели, изготовленные из заморо­женной ртути, легко свариваются в результате соприкосновения и небольшого сдавливания, что облегчает изготовление составных и сложных моделей; при последующем плавлении моделей из твердой ртути ее объем меняется очень незначительно, что позволяет вводить весьма небольшие допуски на размеры отливок. Таким спо­собом можно получать прецизионные отливки исключительно слож­ных конфигураций и, в частности, детали для газовых турбин самолетов.

Небольшое давление паров ртути при обычных температурах было использовано также при создании различных ртутных ламп, среди которых первое место принадлежит лампам дневного света (ЛД, ЛДЦ, ЛБ, ЛХБ, ЛТБ и пр.).

Ртутные лампы низкого давления (-10 -3 мм рт. ст. при 20- 40° С), изготовленные из кварцевого или увиолевого стекла, явля­ются источниками резонансного излучения с длиною волны, равной 2537 и 1849 А. Они применяются в качестве бактерицидных и люми­несцентных ламп. Бактерицидные ртутные лампы (БУВ-15, БУВ-30 и др.) работают в коротковолновой области ультрафиолетового излу­чения и применяются для стерилизации пищевых продуктов, воды, воздуха помещений и др. Люминесцентные ртутные лампы (ЭУВ-15, ЭУВ-30) работают в средневолновой части спектра ультрафиолето­вых излучений и предназначены для лечебных целей.

Ртутные лампы низкого давления используют также для изучения спектров комбинационного рассеяния, для облучения ультрафиолетовыми лучами шкал различных приборов, ручек указа­телей н других приспособлений, покрытых светосоставом.

В ртутных лампах высокого давления (давление паров ртути 0,3-12 aт) интенсивное излучение происходит в ультрафиолетовой и синефиолетовой части спектра. Они используются для светокопиро­вальных работ (ИГАР-2), для освещения производственных поме­щений, улиц и автомагистралей (ДРЛ); для физиотерапии, спектроскопии и люминесцентного анализа, в фотохимии; для ко­пировальных работ используют также ртутно-кварцевые лампы РКС-2,5.

Ртутные лампы сверхвысокого давления (давление паров ртути в них достигает десятков и даже сотен атмосфер) работают при температурах до 1000° С.

Сочетание, в таких лампах светящейся дуги с огромной световой отдачей и яркостью позволяет использовать ртутные лампы сверхвысокого давления в прожекторах, спектральных приборах и в проекционной аппаратуре. Интенсивное излучение в фиолетовой и синей части спектра таких ламп используют для фотосинтеза, в люминес­центной микроскопии, для декоративных целей (светящиеся краски) и т. д.

Для повышения интенсивности излучения в желаемой области спектра в ртутных лампах часто вместо металлической ртути исполь­зуют амальгамы цинка, кадмия и других металлов или добавляют в ртутные лампы галлоидные соединения таких металлов, как тал­лий, .натрий, индий и др.

Наряду с ртутными лампами не утратили своего значения также ртутные выпрямители электрического тока, которые не имеют себе равных по долговечности и простоте эксплуатации. Лишь в последнее время в технологии получения некоторых химических веществ, например, при производстве хлора и каустической соды, ртутные вентили начинают постепенно вытесняться кремниевыми выпрямителями, позволяющими использовать для электролиза вы­прямленный ток до 25 000 а.

Ртуть находит также применение в электронной промышленности. Пары ртути используют в газотронах (ГР1-0.25/1.5; ВГ-236, ВГ-129), применяемых в передатчиках большой и средней мощности, в газо­наполненных тиратронах и триодах. Ртуть применяют в ультразву­ковых генераторах с пьезокварцевыми датчиками, в генераторах для высокочастотного нагрева и в других электронных прибо­рах.

Ртуть широко применяют в вакуумной технике. Со времени изо­бретения Геде ртутных диффузионных насосов, усовершен­ствованных Лэнгмюром, прошло немногим более 50 лет. Эти насосы оказались незаменимыми при получении сверхвысокого вакуума (10 -13 мм рт. ст.). Ртутные диффузионные насосы успешно применяют для создания вакуума в линейных ускорителях элементарных частиц, в устройствах, имитирующих условия космического пространства; в установках термоядерного син­теза, для откачки некоторых приборов, использующих фото­эмиссию.

Ртутным насосам отдают предпочтение при создании вакуума в чувствительных масспектрографах, в течеискателях, использу­ющих водород, и других приборах.

Эти многочисленные применения ртутных насосов объясняются тем, что ртуть обладает важными преимуществами по сравнению с органическим или силиконовыми маслами, используемыми в паро-масляных диффузионных насосах. Одно из этих преимуществ заклю­чается в том, что ртуть, являясь простым веществом, не разлагается на составные части и не загрязняет в такой мере стенки откачиваемых приборов, как ингредиенты жидкостей, используемых в паромасляных насосах.

Способность ртути давать амальгамы (истинные или коллоидные растворы металлов в ртути), даже несмотря на незначительную рас­творимость в ней большинства металлов, имеет исключительное значение. Б последние годы в связи с широким использованием амальгам была создана новая отрасль промышленности, названная амальгамной металлургией. С помощью амальгам осущест­вляется комплексная переработка полиметаллического сырья, полу­чают тонкоднеперсные металлические порошки, многокомпонентные сплавы заданных составов, чистые и сверхчистые металлы, содержа­ние примесей в которых не превышает 10 -6 -10 -8 вес. %. В некото­рых случаях степень рафинирования металла оказывается настолько значительной, что существующие методы анализа не в состоянии обнаружить примесей в конечном продукте. Методом амальгамной металлургии можно получать металлы любой чистоты, в зависимости от чистоты исходных материалов - химических реактивов, воды, аппаратуры и т. д.

При нагревании амальгам до высокой температуры происходит отгонка ртути, и в результате получают металл в виде мелкодисперс­ных пирофорных порошков или компактной массы, содержащей ничтожные следы ртути. Эта особенность амальгам используется в порошковой металлургии; с помощью технологических приемов удается получать многокомпонентные сплавы любых концентраций из тугоплавких металлов или металлов, один из которых имеет низкую температуру плавления, а другой - превышающую 1500- 2000° С.

Многие металлы и сплавы, включая и такие практически нерас­творимые в ртути, как сталь, платина, титан, пермаллой и другие, при удалении с их поверхности окисной или адсорбированной пленки покрываются тонким слоем ртути. Это свойство также нашло при­менение в лабораторной практике и в промышленности. Например, его используют при получении каустической соды и хлора методом электролиза водных растворов хлоридов щелочных металлов на ртутном катоде, предварительно амальгамируя днища стальных электролизеров. Амальгамирование до настоящего времени исполь­зуют в золотодобывающей промышленности для отделения золота от породы с последующей отгонкой ртути, хотя в последнее время этот способ, имеющий многовековую историю, заменяется более прогрессивным способом цианирования.

В электрохимии и аналитической химии, при полярографиче­ском анализе часто применяют амальгамированные платиновые электроды и т. д.

Амальгамы щелочных и щелочноземельных металлов, цинка, алюминия и других элементов используют в препаративной химии для восстановительных реакций. Например, амальгамы щелочных металлов служат для получения водорода и каустической соды при взаимодействии с водою, для восстановления кислорода до перекиси водорода, двуокиси углерода до формиатов и оксалатов. Окислы азота, при взаимодействии с амальгамами щелочных металлов, восстанавливаются до соответствующих нитритов, окис­лы хлора - до хлоритов соответствующих щелочных металлов, двуокись серы - до гидросульфита. Известны также способы получения гидридов щелочных металлов, мышьяка и герма­ния, а также других элементов. С помощью амальгам можно восстанавливать в различных средах ноны металлов до свободных металлов, производить разделение редкоземельных элементов, а также их выделение.

Амальгамы используют также для восстановления органических соединений: для гидрирования кратных углерод-углеродных связей, для восстановления гидроксильных, карбонильных и карбок­сильных групп, для восстановления галогено- и азотсодержа­щих групп, для получения ртутноорганических соединений.

В промышленности эти амальгамы применяют для получения алкоголятов щелочных металлов, которые затем используют при изготовлении различных красителей и лечебных препара­тов - сульфамидов, барбитуратов и витаминов; для восстановления ароматических ннтросоединений до аминов, которые в свою очередь используют при изготовлении всевозможных азокрасителей; для получения шестиатомных спиртов (d-сорбита и d-маннита) путем восстановлении d-глюкозы и d-маннозы. Полученные спирты применяют при производстве специальных сортов бумаги, витамина С, эфиров, искусственных смол; амальгаму натрия исполь­зуют для получения d-рибозы, которая служит исходным продуктом при синтезе витамина В 2 .С помощью амальгам щелочных металлов получают салициловый альдегидов, пинакон который является исходным продуктом при синтезе диметилбутадиенового каучука, глиоксиловую кислоту используемую при синтезе душистых веществ, например, ванилина, при получении галогенсодержащих олефинов и многих других веществ.

Не менее широко применяют амальгамы для получения перекиси натрия, хлорида и гидросульфата натрия и т. д.