Домой / Рвота / Генетика занимается изучением. Питание современного человека

Генетика занимается изучением. Питание современного человека

Содержание статьи

ГЕНЕТИКА, наука, изучающая наследственность и изменчивость – свойства, присущие всем живым организмам. Бесконечное разнообразие видов растений, животных и микроорганизмов поддерживается тем, что каждый вид сохраняет в ряду поколений характерные для него черты: на холодном Севере и в жарких странах корова всегда рождает теленка, курица выводит цыплят, а пшеница воспроизводит пшеницу. При этом живые существа индивидуальны: все люди разные, все кошки чем-то отличаются друг от друга, и даже колоски пшеницы, если присмотреться к ним повнимательнее, имеют свои особенности. Два эти важнейшие свойства живых существ – быть похожими на своих родителей и отличаться от них – и составляют суть понятий «наследственность» и «изменчивость».

Истоки генетики

Истоки генетики, как и любой другой науки, следует искать в практике. С тех пор как люди занялись разведением животных и растений, они стали понимать, что признаки потомков зависят от свойств их родителей. Отбирая и скрещивая лучших особей, человек из поколения в поколение создавал породы животных и сорта растений с улучшенными свойствами. Бурное развитие племенного дела и растениеводства во второй половине 19 в. породило повышенный интерес к анализу феномена наследственности. В то время считали, что материальный субстрат наследственности – это гомогенное вещество, а наследственные субстанции родительских форм смешиваются у потомства подобно тому, как смешиваются друг с другом взаиморастворимые жидкости. Считалось также, что у животных и человека вещество наследственности каким-то образом связано с кровью: выражения «полукровка», «чистокровный» и др. сохранились до наших дней.

Неудивительно, что современники не обратили внимания на результаты работы настоятеля монастыря в Брно Грегора Менделя по скрещиванию гороха. Никто из тех, кто слушал доклад Менделя на заседании Общества естествоиспытателей и врачей в 1865, не сумел разгадать в каких-то «странных» количественных соотношениях, обнаруженных Менделем при анализе гибридов гороха, фундаментальные биологические законы, а в человеке, открывшем их, основателя новой науки – генетики. После 35 лет забвения работа Менделя была оценена по достоинству: его законы были переоткрыты в 1900, а его имя вошло в историю науки.

Законы генетики

Законы генетики, открытые Менделем, Морганом и плеядой их последователей, описывают передачу признаков от родителей к детям. Они утверждают, что все наследуемые признаки определяются генами. Каждый ген может быть представлен в одной или большем числе форм, названных аллелями. Все клетки организма, кроме половых, содержат по два аллеля каждого гена, т.е. являются диплоидными. Если два аллеля идентичны, организм называют гомозиготным по этому гену. Если аллели разные, организм называют гетерозиготным. Клетки, участвующие в половом размножении (гаметы), содержат только один аллель каждого гена, т.е. они гаплоидны. Половина гамет, производимых особью, несет один аллель, а половина – другой. Объединение двух гаплоидных гамет при оплодотворении приводит к образованию диплоидной зиготы, которая развивается во взрослый организм.

Гены – это определенные фрагменты ДНК; они организованы в хромосомы, находящиеся в ядре клетки. Каждый вид растений или животных имеет определенное число хромосом. У диплоидных организмов число хромосом парное, две хромосомы каждой пары называются гомологичными. Скажем, человек имеет 23 пары хромосом, при этом один гомолог каждой хромосомы получен от матери, а другой – от отца. Имеются и внеядерные гены (в митохондриях, а у растений – еще и в хлоропластах).

Особенности передачи наследственной информации определяются внутриклеточными процессами: митозом и мейозом. Митоз – это процесс распределения хромосом по дочерним клеткам в ходе клеточного деления. В результате митоза каждая хромосома родительской клетки удваивается и идентичные копии расходятся по дочерним клеткам; при этом наследственная информация полностью передается от одной клетки к двум дочерним. Так происходит деление клеток в онтогенезе, т.е. процессе индивидуального развития. Мейоз – это специфическая форма клеточного деления, которая имеет место только при образовании половых клеток, или гамет (сперматозоидов и яйцеклеток). В отличие от митоза, число хромосом в ходе мейоза уменьшается вдвое; в каждую дочернюю клетку попадает лишь одна из двух гомологичных хромосом каждой пары, так что в половине дочерних клеток присутствует один гомолог, в другой половине – другой; при этом хромосомы распределяются в гаметах независимо друг от друга. (Гены митохондрий и хлоропластов не следуют закону равного распределения при делении.) При слиянии двух гаплоидных гамет (оплодотворении) вновь восстанавливается число хромосом – образуется диплоидная зигота, которая от каждого из родителей получила по одинарному набору хромосом.

Методические подходы.

Благодаря каким особенностям методического подхода Мендель сумел сделать свои открытия? Для своих опытов по скрещиванию он выбрал линии гороха, отличающиеся по одному альтернативному признаку (семена гладкие или морщинистые, семядоли желтые или зеленые, форма боба выпуклая или с перетяжками и др.). Потомство от каждого скрещивания он анализировал количественно, т.е. подсчитывал число растений с этими признаками, что до него никто не делал. Благодаря этому подходу (выбору качественно различающихся признаков), который лег в основу всех последующих генетических исследований, Мендель показал, что признаки родителей не смешиваются у потомков, а передаются из поколения в поколение неизменными.

Заслуга Менделя состоит еще и в том, что он дал в руки генетиков мощный метод исследования наследственных признаков – гибридологический анализ, т.е. метод изучения генов путем анализа признаков потомков от определенных скрещиваний. В основе законов Менделя и гибридологического анализа лежат события, происходящие в мейозе: альтернативные аллели находятся в гомологичных хромосомах гибридов и потому расходятся поровну. Именно гибридологический анализ определяет требования к объектам общих генетических исследований: это должны быть легко культивируемые организмы, дающие многочисленное потомство и имеющие короткий репродуктивный период. Таким требованиям среди высших организмов отвечает плодовая мушка дрозофила – Drosophila melanogaster . На многие годы она стала излюбленным объектом генетических исследований. Усилиями генетиков разных стран на ней были открыты фундаментальные генетические явления. Было установлено, что гены расположены в хромосомах линейно и их распределение у потомков зависит от процессов мейоза; что гены, расположенные в одной и той же хромосоме, наследуются совместно (сцепление генов) и подвержены рекомбинации (кроссинговер). Открыты гены, локализованные в половых хромосомах, установлен характер их наследования, выявлены генетические основы определения пола. Обнаружено также, что гены не являются неизменными, а подвержены мутациям; что ген – сложная структура и имеется много форм (аллелей) одного и того же гена.

Затем объектом более скрупулезных генетических исследований стали микроорганизмы, на которых стали изучать молекулярные механизмы наследственности. Так, на кишечной палочке Escheriсhia coli было открыто явление бактериальной трансформации – включение ДНК, принадлежащей клетке донора, в клетку реципиента – и впервые доказано, что именно ДНК является носителем генов. Была открыта структура ДНК, расшифрован генетический код, выявлены молекулярные механизмы мутаций, рекомбинации, геномных перестроек, исследованы регуляция активности гена, явление перемещения элементов генома и др. (см . КЛЕТКА; НАСЛЕДСТВЕННОСТЬ; МОЛЕКУЛЯРНАЯ БИОЛОГИЯ) . Наряду с указанными модельными организмами генетические исследования велись на множестве других видов, и универсальность основных генетических механизмов и методов их изучения была показана для всех организмов – от вирусов до человека.

Достижения и проблемы современной генетики.

На основе генетических исследований возникли новые области знания (молекулярная биология, молекулярная генетика), соответствующие биотехнологии (такие, как генная инженерия) и методы (например, полимеразная цепная реакция), позволяющие выделять и синтезировать нуклеотидные последовательности, встраивать их в геном, получать гибридные ДНК со свойствами, не существовавшими в природе. Получены многие препараты, без которых уже немыслима медицина (см . ГЕННАЯ ИНЖЕНЕРИЯ) . Разработаны принципы выведения трансгенных растений и животных, обладающих признаками разных видов. Стало возможным характеризовать особей по многим полиморфным ДНК-маркерам: микросателлитам, нуклеотидным последовательностям и др. Большинство молекулярно-биологических методов не требуют гибридологического анализа. Однако при исследовании признаков, анализе маркеров и картировании генов этот классический метод генетики все еще необходим.

Как и любая другая наука, генетика была и остается оружием недобросовестных ученых и политиков. Такая ее ветвь, как евгеника, согласно которой развитие человека полностью определяется его генотипом, послужила основой для создания в 1930–1960-е годы расовых теорий и программ стерилизации. Напротив, отрицание роли генов и принятие идеи о доминирующей роли среды привело к прекращению генетических исследований в СССР с конца 1940-х до середины 1960-х годов. Сейчас возникают экологические и этические проблемы в связи с работами по созданию «химер» – трансгенных растений и животных, «копированию» животных путем пересадки клеточного ядра в оплодотворенную яйцеклетку, генетической «паспортизации» людей и т.п. В ведущих державах мира принимаются законы, ставящие целью предотвратить нежелательные последствия таких работ.

Современная генетика обеспечила новые возможности для исследования деятельности организма: с помощью индуцированных мутаций можно выключать и включать почти любые физиологические процессы, прерывать биосинтез белков в клетке, изменять морфогенез, останавливать развитие на определенной стадии. Мы теперь можем глубже исследовать популяционные и эволюционные процессы (см . ПОПУЛЯЦИОННАЯ ГЕНЕТИКА) , изучать наследственные болезни (см . ГЕНЕТИЧЕСКОЕ КОНСУЛЬТИРОВАНИЕ) , проблему раковых заболеваний и многое другое. В последние годы бурное развитие молекулярно-биологических подходов и методов позволило генетикам не только расшифровать геномы многих организмов, но и конструировать живые существа с заданными свойствами. Таким образом, генетика открывает пути моделирования биологических процессов и способствует тому, что биология после длительного периода дробления на отдельные дисциплины вступает в эпоху объединения и синтеза знаний.

Генетика

Набор аллелей для данного организма, называется его , а наблюдаемая характеристика или признак организма называют его . Когда говорят, что данный организм гетерозиготный по гену, часто одну аллель указывают как доминирующую (доминантную), поскольку ее качества преобладают в фенотипе организма, в то время как другие аллели называются рецессивными, поскольку их качества могут отсутствовать и не наблюдаться. Некоторые аллели не имеют полного доминирования, а взамен имеют неполное доминирование промежуточного фенотипа, или т.н. - обе черты являются доминантными одновременно, и обе черты присутствуют в фенотипе.

Когда пара организмов размножается половым путем, их потомки случайно наследуют один из двух аллелей от каждого из родителей. Наблюдение дискретного наследования и сегрегация аллелей в общем известны как , или закон сегрегации (закон единообразия гибридов первого поколения).

Взаимодействие нескольких генов

Человеческий рост представляет собой комплексный генетический признак. Результаты исследования, полученные Фрэнсисом Гальтон в 1889 году, показывают взаимосвязь между ростом потомков и средним ростом их родителей. Однако корреляция не является абсолютной и присутствуют значительные отклонения от генетической изменчивости в росте потомков, что свидетельствует о том, что окружающая среда является также важным фактором этого признака.

Организмы имеют тысячи генов, а во время полового размножения ассортимент этих генов в основном является независимым, то есть их наследования происходит случайным образом без связи между ними. Это означает, что наследование аллелей для желтого или зеленого цвета горошка не имеет отношения к наследованию аллелей для белого или фиолетового цвета цветов. Этот феномен, известный как , или "Закон независимого наследования" (закон расщепления признаков), означает, что аллели разных генов перемешиваются между родителями для формирования потомков с различными комбинациями. Некоторые гены не могут быть унаследованы отдельно, поскольку для них предназначена определенная генетическая связь, которая обсуждается в дальнейшем в статье.

Часто разные гены могут взаимодействовать таким образом, что они влияют на одну и ту же характерную черту. Например, в пупочнике весеннем (Omphalodes verna) существует ген из аллелей, определяющих цвет цветка: голубой или пурпурный. Однако другой ген контролирует или вообще имеет цветок цвет либо он белый. Когда растение имеет две копии белой аллели, его цветы являются белыми, независимо от того первый ген имел голубую или пурпурную аллель. Это взаимодействие между генами, называется - активность одного гена находится под влиянием вариаций других генов.

Многие признаки не являются дискретными чертами (например, фиолетовые или белые цветки), но зато есть непрерывными чертами (например, человеческий рост и цвет кожи). Этот комплекс признаков является следствием наличия многих генов. Влияние этих генов является связующим звеном различных степеней влияния окружающей среды на организмы. - это степень вклада генов организма к комплексу характерных черт. Измерение наследственности черт является относительным - в среде которая часто изменяется, она имеет большее влияние на общую смену характерных признаков. Например, в Соединенных Штатах рост человека является комплексной чертой с вероятностью наследования 89%. Однако, в Нигерии, где люди имеют существенную разницу в возможностях доступа к хорошему питания и здравоохранению, вероятность наследования такого признака как рост всего 62%.

Воспроизведение

Когда происходит деление клеток, их геном полностью копируется, и каждая дочерняя клетка наследует один полный набор генов. Этот процесс называется - простейшая форма воспроизведения и основа для вегетативного (бесполого) размножения. Вегетативное размножение может также происходить и в многоклеточных организмах, создавая потомков, которые наследуют геном от одного отца. Отпрысков, которые являются генетически идентичными с их родителями, называют клонами.

Эукариотные организмы часто используют половое размножение для получения потомства, имеющие смешанный генетический материал, унаследованный от двух разных отцов. Процесс полового размножения меняется (чередуется) в зависимости от типа, который содержит одну копию генома ( и двойную копию (). Гаплоидные клетки образуются в результате и сливаясь с другой гаплоидной клеткой генетический материал для создания диплоидной клетки с парными хромосомами (напр. слияние (гаплоидная клетка) и (гаплоидная клетка)) вызывает образование . Диплоидные клетки путем деления образуют гаплоидные клетки, без воспроизведения их ДНК, для создания дочерних клеток, которые случайно наследуют одну из каждой пары хромосом. Большинство животных и многие растения являются диплоидными организмами на протяжении большей части своей жизни, с гаплоидной формой, которая характерна только для одной клетки - .

Несмотря на то, что они не используют гаплоидный / диплоидный способ полового размножения бактерии имеют много способов получения новой генетической информации (то есть для изменчивости). Некоторые бактерии могут пройти , передавая небольшой круговой фрагмент ДНК другой бактерии. Бактерии могут также принимать чужеродные фрагменты ДНК из окружающей среды и интегрировать их в свой геном, этот феномен, известный как трансформация . Этот процесс называют также - передача фрагментов генетической информации между организмами, которые не связанны между собой.

ВВЕДЕНИЕ В ГЕНЕТИКУ

    Генетика – наука о наследственности и изменчивости. Предмет, объекты и задачи генетики

    Генетическая информация; её свойства

    Разделы генетики. Генетика – фундамент современной биологии

    Методы генетики

    Краткая история генетики. Особенности развития отечественной генетики

1. Генетика – наука о наследственности и изменчивости.

Предмет, объекты и задачи генетики

Способность к воспроизведению с изменением – это одно из основных свойств биологических систем. Принцип Франческо Реди – «подобное порождает подобное» – проявляется на всех уровнях организации жизни:

Генетика – это наука о наследственности и изменчивости живых организмов и методах управления ими; это наука, изучающая наследственность и изменчивость признаков.

Понятия «наследственность» и «изменчивость» неразрывно связаны между собой.

Изменчивость – это…

1) существование признаков в различных формах (вариантах);

2) появление различий между организмами (частями организма или группами организмов) по отдельным признакам.

Наследственность – это…

1) способность организмов порождать себе подобных;

2) способность организмов передавать (наследовать) свои признаки и качества из поколения в поколение;

3) сохранение определенных вариантов признаков при смене поколений.

2. Генетическая информация; её свойства

Существует множество подходов к определению понятия «информация». Мы будем рассматривать информацию как некоторую программу, при выполнении которой можно получить определенный результат.

Генетическая информация – это такая наследственная информация, носителем которой является ДНК (у части вирусов – РНК).

Минимальный набор хромосом и одновременно минимальный объем ДНК определенного биологического вида называется геномом (имен. падеж, ед. число – геном).

Участок ДНК, который несет информацию о некотором элементарном признаке – фене, называется геном. Многие гены могут существовать в виде двух и более вариантов – аллелей.

АЛЛЕЛЬ (от греч. allelon - друг друга, взаимно), аллеломорфа, одно из возможных структурных состояний гена. Любое изменение структуры гена в результате мутаций или за счёт внутригенных рекомбинаций у гетерозигот по двум мутантным аллелям приводит к появлению новых аллелей этого гена (число аллелей каждого гена практически неисчислимо).

Аллели одного гена могут обусловливать существование отличающихся друг от друга форм одного и того же заболевания, например, различные аллели гена, контролирующего синтез бета-цепи гемоглобина, вызывают различные формы анемий.

Совокупность всех генов (точнее, аллелей) определенного организма называется генотипом (имен. падеж, ед. число – генотип).

ФЕНОТИП (от греч. phaino - являю, обнаруживаю и typos - отпечаток, форма, образец), особенности строения и жизнедеятельности организма, обусловленные взаимодействием его генотипа с условиями среды.

Термин “Фенотип” предложен датским биологом В. Иогансеном в 1909 и обозначает совокупность проявления генотипа (общий облик организма), в узком - совокупность отдельных признаков (фенов), контролируемых определенными генами.

Термин геном (нем. Genom) предложил немецкий ботаник Ганс Винклер в 1920 г. для обозначения минимального набора хромосом. Такое представление о геноме сохраняется и в современной цитогенетике. Однако вскоре было доказано, что в состав хромосом входит ДНК (Фёльген, 1924), а к середине XX в. было установлено, что именно ДНК является носителем наследственной информации (О.Эвери с сотр., 1944; Дж.Уотсон и Ф.Крик, 1953). Поэтому в настоящее время в молекулярной генетике термином геном все чаще обозначают минимальную упорядоченную совокупность всех молекул ДНК в клетке.

3. Разделы генетики.

Вся генетика (как и любая наука) подразделяется на фундаментальную и прикладную.

Фундаментальная генетика изучает общие закономерности наследования признаков у лабораторных, или модельных видов: вирусов (например, Т-чётных фагов), прокариот (например, кишечной палочки), плесневых и дрожжевых грибов, дрозофилы, мышей и некоторых других.

К фундаментальной генетике относятся следующие разделы:

– классическая (формальная) генетика,

– цитогенетика,

– молекулярная генетика (в т.ч., генетика ферментов и иммуногенетика),

– генетика мутагенеза (в т. ч., радиационная и химическая генетика),

– эволюционная генетика,

– геномика и эпигеномика,

– генетика индивидуального развития и эпигенетика,

– генетика поведения,

– генетика популяций,

– экологическая генетика (в т.ч., генетическая токсикология),

– математическая генетика.

Прикладная генетика разрабатывает рекомендации для применения генетических знаний в селекции, генной инженерии и других разделах биотехнологии, в деле охраны природы. Идеи и методы генетики находят применение во всех областях человеческой деятельности, связанной с живыми организмами. Они имеют большое значение для решения проблем медицины, сельского хозяйства, микробиологической промышленности.

Генетическая (генная) инженерия – это раздел молекулярной генетики, связанный с целенаправленным созданием in vitro новых комбинаций генетического материала, способного размножаться в клетке-хозяине и синтезировать конечные продукты обмена.

Генная инженерия возникла в 1972, когда в лаборатории П. Берга (Станфордский ун-т, США) была получена первая рекомбинантная (гибридная) ДНК (рекДНК), в которой были соединены фрагменты ДНК фага лямбда и кишечной палочки с кольцевой ДНК обезьяньего вируса SV40.

В прикладной генетике в зависимости от объекта исследования выделяют следующие разделы частной генетики:

    Генетика растений: дикорастущих и культурных: (пшеница, рожь, ячмень, кукуруза; яблони, груши, сливы, абрикосы – всего около 150 видов).

    Генетика животных: диких и домашних животных (коров, лошадей, свиней, овец, кур – всего около 20 видов)

    Генетика микроорганизмов (вирусов, прокариот, низших эукариот – десятки видов).

В особый раздел частной генетики выделяется генетика человека (существует специальный Институт медицинской генетики АМН России)

4. Методы генетики

Совокупность методов исследования наследственных свойств организма (его генотипа) называется генетический анализ. В зависимости от задачи и особенностей изучаемого объекта генетический анализ проводят на популяционном, организменном, клеточном и молекулярном уровнях.

Основу генетического анализа составляет гибридологический анализ, основанный на анализе наследования признаков при скрещиваниях.

Однако в некоторых случаях метод прямого гибридологического анализа оказывается неприменим. Например, при изучении наследования признаков у человека необходимо учитывать ряд обстоятельств: невозможность планирования скрещиваний, низкая плодовитость, длительный период полового созревания. Поэтому кроме гибридологического анализа, в генетике используется множество других методов.

5. Краткая история генетики. Особенности развития отечественной генетики

Явления наследственности и изменчивости признаков были известны с древнейших времен. Сущность этих явлений была сформулирована в виде эмпирических правил: «Яблочко от яблони недалеко падает», «От худого семени не жди доброго племени», «Не в мать, не в отца, а в прохожего молодца» и т.д.

Натурфилософы античного мира пытались объяснить причины сходства и различия между родителями и их потомками, между братьями и сестрами, механизмы определения пола, причины рождения близнецов. Преемственность поколений описывалась терминами «генус» (род), «геннао» (рождаю), «генетикос» (имеющий отношение к происхождению), «генезис» (происхождение).

В Новое время в Англии (Т. Найт), Германии (Й. Кёльрейтер), Франции (О. Сажрэ) были разработаны методики постановки опытов по гибридологическому анализу, были открыты явления доминантности и рецессивности, сформулированы представления об элементарных наследуемых признаках. Однако раскрыть механизмы наследственности и изменчивости долгое время не удавалось. Для объяснения феноменов наследственности и изменчивости использовались концепции наследования благоприобретенных признаков, панспермии, изменчивости признаков под прямым влиянием среды и др.

ЦИТОГЕНЕТИКА. ПРИРОДА ГЕНА. ЭВОЛЮЦИЯ ПРЕДСТАВЛЕНИЙ О ГЕНЕ.

В основе воспроизведения биологических систем лежит деление клеток.

В 1831–1833 гг. Р. Браун доказал, что одним из основных компонентов эукариотической клети является ядро.

В конце XIX в. была установлена ведущая роль ядра в хранении и передаче наследственной информации

В 1924 г. Фёльген доказал, что в состав хромосом входит ДНК.

Число хромосом постоянно для каждого вида организмов.

На этом основании в 1903г. американский цитолог Уильям Сэттон пришел к выводу, что в хромосомах локализованы носители наследственной информации, которые датский генетик Иоганнсен в 1909 г. назвал генами.

Раздел генетики, изучающий хромосомы как носители наследственной информации, называется цитогенетикой.

В 1944 г. О. Эйвери, К. Мак-Лауд, М. Мак-Карти доказали, что веществом, ответственным за передачу наследственных детерминант у бактерий, является ДНК. В 1953 г. Дж. Уотсон и Ф. Крик расшифровали структуру молекулы ДНК и раскрыли генетический код, благодаря которому выявлена закономерность механизмов синтеза полипептидов и белков всех живых существ.

Химический состав и строение молекулы ДНК

Уотсон и Крик предположили, что молекула ДНК представляет собой две полимерные цепи, соединенные между собой и закрученные в форме двойной спирали.

Основная структурная единица одной цепи - нуклеотид.

Принцип комплементарности

Сцепление между цепями обеспечивается особыми водородными связями между

аденином и тимином (2 связи)

гуанином и цитозином (3 связи)

Для любой последовательности азотистых оснований возможна равная ей по длине комплементарная последовательность, составляющая вторую цепь двойной спирали.

Конкретная последовательность пар А-Т и Г-Ц не влияет на структуру молекулы ДНК.

Возможное число различных последовательностей пар оснований в молекуле ДНК практически бесконечно и способно кодировать колоссальное количество информации.

Правило Э.Чаргаффа- биологический закон, в соответствии с которым в любых молекулах ДНК молярная сумма пуриновых оснований (Аденин + Гуанин) равна сумме пиримидиновых оснований (Цитозин + Тимин).

Из правила Э.Чаргаффа следует, что нуклеотидный состав ДНК разных видов может варьировать лишь по суммам комплементарных оснований.

Поскольку цепи ДНК комплементарны, каждая из них при расплетании двойной спирали способна служить матрицей для синтеза новой комплементарной цепи.

Кариотип – это совокупность метафазных хромосом, характерных для определенного вида организмов.

Постоянство кариотипа поддерживается с помощью точных механизмов митоза и мейоза.

Изучение кариотипов и их изменчивости важно для

здравоохранения (многие генетические заболевания связаны с изменением кариотипа),

селекции (многие сорта растений различаются по кариотипу)

экологического биомониторинга (кариотип может изменяться под воздействием экологических факторов).

Кариотип используется в качестве видовой характеристики (существует особый раздел систематики – кариосистематика).

Кариотипический критерий является одним из важнейших критериев вида. Сущность этого критерия заключается в том, что все особи данного вида характеризуются определенным кариотипом.

В понятие «кариотип» включается число хромосом, их размеры, морфология, особенности продольной дифференцировки.

Число хромосом в геноме называется основным хромосомным числом и обозначается символом х.

Изучение геномов важно с точки зрения медицины, теории селекционного процесса и теории эволюции.

Согласно последним исследованиям в человеческом теле находится от 24 000 до 25 000 генов. Гены наследуются от биологических родителей и определяют такие вещи, как цвет кожи, наличие веснушек и скорость загара. Каждый ген вашего тела является сегментом ДНК и подает сигналы клеткам.

Ученые, врачи и диетологи в один голос утверждают, что гены играют важную роль в подверженности кожи различным заболеваниям. Мы постоянно слышим истории о людях с «хорошими» генами, которые могут литрами пить шоколадное молоко и при этом наслаждаться прекрасной кожей. В прошлом я проклинала свои «плохие» гены каждый раз, когда моя кожа покрывалась красной сыпью. Гены важны, и, без сомнения, они оказывают влияние на состояние кожи. Но стоит ли причину видеть только в них?

Исследователи по всему миру заметили, что наша определенная генами биология не в силах угнаться за коренными изменениями в питании, произошедшими на Западе за последнее время. Что это означает для вашего здоровья? Давайте подумаем о питании наших предков. Очевидно, что они проводили большую часть времени в поисках пищи и обустройстве жилья. О полуфабрикатах и газированных напитках никто и понятия не имел, а искусственные красители и ароматизаторы не существовали вовсе. Рацион наших предков зависел от региона проживания, но ученым удалось выявить основные характеристики их питания. Они перекусывали орехами, семенами, фруктами, овощами, охотились на дичь, ловили рыбу, шоколадного печенья в их рационе не было. Конечно, может быть, рацион ваших предков отличался от этого, особенно если они были эскимосами. Древние эскимосы питались морепродуктами и рыбой, поэтому они потребляли больше жира и омега-3 жирных кислот. Зерновые не были неотъемлемой частью их питания.

Какими бы ни были ваши предки, в современном мире вам не нужно собирать орехи и ловить кабанов. Сегодня вы просто идете в магазин и выбираете все необходимое.

Питание современного человека:

    обработанное мясо, например ветчина, салями и сосиски

    молочные продукты (жирное и обезжиренное молоко, сыр и масло)

    белый хлеб, мучные изделия, торты, печенье, рафинированный сахар и сиропы

    рафинированные масла и маргарин

    кофе, чай, алкогольные напитки

    фрукты, овощи, рыба, орехи, крупы и бобовые



Как правило, чем больше полуфабрикатов ест человек, тем меньше он в результате потребляет фруктов и овощей. Признайтесь, что полуфабрикаты - самый удобный вариант ужина в конце рабочего дня, когда вы слишком устали, чтобы готовить. Удобство - важная часть современного общества, но зачастую подобное питание негативно отражается на состоянии кожи.

В Американском журнале клинического питания Лорен Кордэйн и ее коллеги высказали свое мнение о том, что перемены в рационе человека произошли еще десять тысяч лет назад, с зарождением земледелия и животноводства, но последние изменения, связанные с потреблением слишком большого количества обработанной пищи и полуфабрикатов, произошли совсем недавно, чтобы генетика человека могла к ним адаптироваться. Возможно, многие из нас вообще не являются жертвами плохой генетики, просто мы запутываем наши бедные гены, потребляя пищу, которую наши тела не могут распознать.

Многие ученые предполагают, что медленная генетическая адаптация к современному рациону питания может стать причиной возникновения рака, сердечных болезней и акне. Исследования показали, что такое заболевание как акне встречается очень редко или вообще отсутствует в традиционных культурах, где люди едят необработанную пищу.

С возникновением обработки еды появились семь ключевых изменений в рационе человека:

1. Гликемическая нагрузка возросла. Обработанная пища отличается более высоким гликемическим индексом, поднимающим уровень глюкозы в крови. Это может повредить кровеносные сосуды и привести к развитию диабета II типа.

2. Изменилось соотношение жирных кислот. Животные, выращенные в искусственных условиях, не получают достаточной физической нагрузки, поэтому в их мясе практически нет омега-3 жирных кислот, но зато в нем содержится большое количество насыщенных жиров.

3. Изменились пропорции белков, жиров и углеводов. Люди стали потреблять больше насыщенных жиров и рафинированных углеводов.

4. Сократилось количество питательных микроэлементов. В таких прошедших обработку продуктах, как белый хлеб и пшеничная мука, практически нет витаминов и минералов.

5. Изменился кислотно-щелочной баланс. Ставший привычным рацион питания может вызвать метаболический ацидоз (смещение кислотно-щелочного баланса организма в сторону увеличения кислотности), который с возрастом будет лишь возрастать. Слишком большое содержание кислоты в организме пагубно сказывается на здоровье.

6. Изменился натриево-калиевый баланс. Большое содержание соли в продуктах и потребление фруктов и овощей в недостаточном количестве означает, что у большинства из нас наблюдается дефицит калия. Исследователи выяснили, что люди стали потреблять на 400% больше соли, но значительно меньше овощей и фруктов.

7. Сократилось содержание клетчатки. Рафинированные сахара и масла, алкогольные напитки и молочные продукты не содержат клетчатку. Чем меньше в мучных изделиях полезных веществ, тем белее они выглядят.

В настоящее время лишь небольшое число примитивных культур продолжают есть натуральные продукты, не потребляя фастфуд, белую муку и сахар. Изучать такие культуры невероятно интересно, так как они на своем примере демонстрируют зависимость здоровья кожи от питания.

    В современном обществе, где люди потребляют белую муку, молочные продукты и сахар, более 79% подростков страдают от акне.

    Удивительно, но более чем у 40% мужчин и женщин старше 25 лет, проживающих в странах Запада, есть акне.

    Эскимосы, чей рацион состоит из натуральных продуктов, не подвержены акне, однако эскимосы, чье питание приближено к западному, точно так же страдают от этого заболевания.

    Жители японского острова Окинава питаются натуральными продуктами и не страдают акне.

О генах

У вас может быть генетическая предрасположенность к экземе, псориазу, темным кругам под глазами и целлюлиту, но это не означает, что вам придется страдать ими всю жизнь. Здоровое питание и ежедневный правильный образ жизни оказывают влияние на гены. Оказывается, сбалансированный рацион может «выключить» проблемные гены. Ген псориаза может перестать быть активным и просто начать пребывание в спящем состоянии после прохождения программы против этого заболевания.

Если вы страдаете от акне, целлюлита, перхоти, экземы/дерматита, псориаза или розацеа, вам будет приятно узнать о том, что в этой книге есть специальные программы, которые помогут вам избавиться от этих проблем (см. Часть III). Если у вашего ребенка есть кожные заболевания, от которых вы хотите его избавить, обратитесь к Главе 16. Информацию о том, как лечить себорейный дерматит у новорожденных, вы найдете в Главе 14. Кроме того, вы можете незамедлительно обратиться к Части III «Специализированные программы», перед тем как начнете изучать главы Части II «Восемь правил здоровой кожи».

Если же вы страдаете другим кожным заболеванием или у вас отсутствуют явные проблемы (и вы просто хотите предотвратить преждевременное старение), то вам подойдет Часть II - «Восемь правил здоровой кожи». Там вы найдете основные рекомендации, которые следует соблюдать, чтобы стать обладателем красивой кожи.

ПРЕДУПРЕЖДЕНИЕ

Не занимайтесь самодиагностикой! Существует множество кожных заболеваний,в том числе и серьезных, требующих постоянного медицинского наблюдения.

Если вы еще не консультировались с врачом по поводу состояния вашей кожи, сделайте это перед тем, как приступать к Диете для здоровой кожи. Убедитесь в том, что рекомендации подойдут именно вам.

ГЕНЕТИКА (греч. genetikos относящийся к происхождению) - наука о наследственности и изменчивости организмов.

Предмет и методы генетики. Предметом изучения Г. являются два свойства организмов - наследственность (см.) и изменчивость (см.). Наследственность - свойство организмов передавать следующему поколению присущие данному организму особенности становления в ходе онтогенеза определенных черт строения и типа обмена веществ. Передача особенностей организма следующим поколениям возможна только в процессе размножения или самовоспроизведения.

Самовоспроизведение организмов может осуществляться путем вегетативного размножения, когда из частей родительской особи возникает организм потомков. Так, картофель, напр., разводится в основном клубнями. У низших животных, таких как гидра, некоторые клетки воспроизводят целое животное. Микроорганизмы размножаются преимущественно путем деления, некоторые размножаются почкованием, а плесени и дрожжи - путем образования спор. Такие доклеточные формы организации живой материи, как вирусы, размножаются путем репродукции в чувствительной клетке, где сперва идет раздельный синтез вирусной нуклеиновой к-ты (ДНК или РНК) и белка, а затем происходит их объединение и формирование вирусных частиц (см. Вирусы). Высшие же организмы осуществляют воспроизведение себе подобных путем полового размножения. Новое дочернее поколение при половом размножении возникает в результате слияния женской и мужской половых клеток.

Другим свойством организмов, входящим в предмет исследования Г., является изменчивость. Изменчивость - свойство живых организмов, заключающееся в изменении генов и их проявления в процессе развития организма, т. е. изменчивость является свойством, противоположным наследственности.

Различают фенотипическую (модификационную) и генотипическую изменчивость.

Фенотипическая изменчивость организмов связана с тем, что в процессе индивидуального развития, который совершается в определенных условиях окружающей среды, может наблюдаться изменение морфол., физиол., биохим, и других особенностей организмов. Однако свойства, приобретенные организмом в результате такой изменчивости, не наследуются, хотя пределы флюктуации признака (норма реакции) организма определяются его наследственностью, т. е. совокупностью генов.

Генотипическая изменчивость организмов обусловлена либо изменением собственно генетического материала - мутациями (см. Мутация), либо возникновением новых сочетаний генов - рекомбинацией (см.). В зависимости от этого генетическая изменчивость подразделяется на мутационную и рекомбинативную (комбинативную).

Изучение наследственности и изменчивости живых систем ведется на разных уровнях организации живой материи - на молекулярном, хромосомном, клеточном, организменном и популяционном с привлечением методов смежных дисциплин, таких как биохимия, биофизика, иммунология, физиология и т. д. Этим объясняется то, что в Г. большое количество конкретных разделов выделилось в самостоятельные научные дисциплины, такие как молекулярная, биохим, физиол, и мед. генетика, иммуногенетика, феногенетика, филогенетика, популяционная генетика и др. Из них большое значение для медицины имеют феногенетика, к-рая изучает роль генов в индивидуальном развитии особи; физиологическая генетика, изучающая наследственную обусловленность физиологии организмов и влияние на нее факторов окружающей среды; иммуногенетика, фармакогенетика и генетика патогенности и вирулентности микроорганизмов; генетика популяций, выясняющая законы наследственности и изменчивости в экологических природных условиях.

Основным методом исследования наследственности и изменчивости организмов является генетический анализ (см.), который включает ряд частных методов. Наиболее информативным и специфическим методом генетического анализа является выяснение природы выбранного для такого анализа признака. Этот метод предусматривает систему скрещиваний в ряде поколений или изучение семейной приуроченности интересующего признака с целью анализа за кономерностей наследования отдельных свойств и признаков организмов (см. Инбридинг , Близнецовый метод). Генетический анализ располагает также частными методами анализа: рекомбинационным, мутаци онным, комплементационным и популяционным.

Процесс материальной преемственности в поколениях отдельных клеток и организмов изучают с помощью цитол. метода, который в сочетании с генетическим получил название цитогенетического метода изучения наследственности. После открытия генетической роли нуклеиновых к-т успешно развивается метод молекулярного анализа структуры и функционирования гена. Феногенетический метод предусматривает изучение действия гена и его проявления в индивидуальном развитии организма. Для этого используются такие приемы, как трансплантация наследственно различных тканей, пересадка ядер из одной клетки в другую и т. д. Анализ таких генетических явлений ведут также с привлечением новейших методов различных отраслей естествознания, в особенности биохимии, однако все используемые методы других дисциплин для Г. являются только вспомогательными к основному методу - генетическому анализу.

Основные этапы и направления развития генетики. Всевозможные гипотезы о природе наследственности и изменчивости высказывались еще на заре культуры человечества. Основой для них служили наблюдения человека над самим собой, а также результаты опытов, полученные при разведении животных и выращивании растений. Уже в те времена человек производил определенный отбор, т. е. оставлял для дальнейшего воспроизводства только тех животных или те растения, которые обладали ценными для него качествами. Благодаря такой примитивной селекции человеку удалось создать большое число видов различных домашних животных и культурных растений- Первые сочинения по наследственности и изменчивости появились лишь в 17 в., когда Камерарцус (R. Camerarius) в 1694 г. опубликовал «Записки о поле у растений», где сделал вывод, что растения, как и животные, имеют половую дифференциацию. Он также высказал предположение, что опыление растения одного вида пыльцой другого вида может привести к возникновению новых форм. В начале 18 в. стали получать гибриды и описывать их. Первые научные исследования по гибридизации осуществил Кельрейтер (J. Kolreuter) в 60-х гг. 18 в. Он показал, что в качестве отцовского или материнского растения может быть использован любой из родительских видов, Т. к. при скрещивании в обоих направлениях получаются одинаковые гибриды, т. е. в передаче наследственности играют одинаковую роль как пыльца, так и семяпочка.

В дальнейшем исследованием растительных гибридов с целью выявления закономерностей появления в них родительских признаков занимались многие исследователи - Найт (Th.Knight), Ноден (Ch. Naudin) и др. Их наблюдения еще не могли стать базой для формирования науки, однако наряду с бурным развитием племенного животноводства, а также растениеводства и семеноводства во второй половине 19 в. они возбудили повышенный интерес к анализу явлений наследственности.

Особенно сильно развитию науки о наследственности и изменчивости способствовало учение Ч. Дарвина (1859) о происхождении видов, к-рое обогатило биологию историческим методом исследования эволюции организмов. Дарвин приложил много усилий для изучения явлений наследственности и изменчивости, и хотя ему не удалось установить закономерности наследственности, он все же собрал большое количество фактов, сделал на их основе целый ряд правильных выводов и доказал, что виды непостоянны и что они произошли от других видов, которые отличались от ныне живущих.

Основные законы Г. были открыты и сформулированы чеш. естествоиспытателем Г. Менделем, экспериментировавшим с различными сортами гороха (1865). Результаты своих исследований Г. Мендель изложил в ставшей классической книге «Опыты с растительными гибридами», опубликованной в 1866 г. Для опытов по гибридизации им были использованы два сорта гороха, которые различались по форме семян или окраске цветов. Это позволило Г. Менделю практически разработать методы генетического анализа наследования отдельных признаков и установить принципиально важное положение, гласящее, что признаки определяются отдельными наследственными факторами, передающимися через половые клетки, и что отдельные признаки организмов при скрещивании не исчезают, а сохраняются в потомстве (см. Менделя законы). Хотя Г. Мендель ничего не знал о местонахождении наследственных факторов в клетке, об их хим. природе и механизме влияния на тот или иной признак организма, тем не менее его учение о наследственных факторах как единицах наследственности легло в основу теории гена (см. Ген).

Однако принципиальные результаты опытов Г. Менделя были поняты биологами лишь в 1900 г., когда голл. ботаник X. де Фрис и почти одновременно с ним нем. ботаник Корренс (С. Correns) и австр. учецый Чермак (E. Tschermak) вторично открыли законы наследования признаков. С этого времени началось бурное развитие Г., утверждавшей принципы дискретности в явлениях наследования, а 1900 г. принято считать официальной датой рождения Г.

В 1906 г. на III Международном конгрессе по гибридизации по предложению Бейтсона (W. Bateson) наука, изучающая наследственность и изменчивость, была названа генетикой, а менделевская единица наследственности по предложению Иогансена (W. Johannsen) вскоре получила название «ген» (1909).

В 1901 г. X. де Фрис сформулировал теорию мутаций, гласящую, что наследственные свойства и признаки организмов изменяются скачкообразно, т. е. в результате мутаций (см. Мутация). Вскоре было установлено, что наследственные факторы связаны с хромосомами, а в 1911г. Т. Морган, Бриджиз (С. В. Bridges), Меллер (Н. J. Muller), Стертевант (A. H. Sturtevant) и др. создали хромосомную теорию наследственности (см.) и экспериментально доказали, что основными носителями генов являются хромосомы и что гены располагаются в хромосоме в линейном порядке (см. Хромосомы).

Создание хромосомной теории сделало центральной теорией Г. материалистическую концепцию гена. Руководствуясь этой теорией, генетики в 30-50-е гг. 20 в. получили возможность осуществить исследования, результаты которых имели огромное принципиальное значение.

В 1926-1929 гг. С. С. Четвериков с сотр. первым провел экспериментальный генетический анализ популяций дрозофилы, чем заложил основы современного направления в популяционной и эволюционной Г. Большой вклад в развитие популяционной генетики (см.) сделали амёр. ученый Райт (S. Wright) и англ. ученые Фишер (R. Fisher, 1890-1962) и Холдейн (J. В. S. Haldane, 1892-1964), заложившие в 20-30-х гг. основы генетико-математического метода и генетической теории отбора. Для развития экспериментальной Г. популяций много сделали советские ученые Н. П. Дубинин, Д. Д. Ромашов и Н. В. Тимофеев-Ресовский.

В разработку генетических основ селекции крупный вклад внесли советские генетики М. Ф. Иванов, А. С. Серебровский, Б. И. Васин, П. И. Кулешов и др.

В 1929-1934 гг. Н. П. Дубинин, А. С. Серебровский и др. впервые выдвинули и экспериментально подтвердили идею о дробимости гена, согласно к-рой ген представляет собой сложную систему со своей особой внутренней организацией и с ложностью функций. В 1943 г. опытами по определению эффекта положения генов у дрозофилы Н. П. Дубинин и Б. Н. Сидоров исчерпывающе доказали, что нормальный доминантный ген в результате изменения генного окружения в хромосоме теряет такое важное свойство, как доминантность (см.). Открытое явление свидетельствовало о том, что действие гена находится в связи с его положением в хромосоме.

В 1925 г. Г. А. Надсон и Г. С. Филиппов на дрожжах и в 1927 г. Меллер на дрозофиле получили наследственные изменения (мутации) под влиянием рентгеновских лучей. Почти одновременно с Меллером радиационные мутации у растений получил Стадлер (L. J. Stadler). Т. о., впервые экспериментальна была доказана изменчивость генов под влиянием факторов окружающей среды.

Открытие мутагенеза под влиянием хим. веществ было по своему значению равно открытию мутационного действия радиационного облучения. Было установлено, что многие хим. вещества резко повышают частоту мутаций по сравнению со спонтанным фоном. И. А. Раппопорт открыл мощное мутагенное действие этиленимина (1946), к-рое впоследствии было широко использовано для создания высокопродуктивных штаммов продуцентов антибиотиков (С. И. Алиханян, С. Ю. Гольдинг и др., 1967).

В 1941 г. Бидл (G. W. Beadle) и Тейтем (E. L. Tatum) в США получили биохим, мутации у нейроспоры, что положило начало изучению механизмов генетического контроля метаболизма клетки.

Принципиальным этапом в развитии направления, ставшего в дальнейшем центральным при создании молекулярной генетики (см.), явилась речь Н. К. Кольцова «Физикохимические основы биологии», к-рую он произнес на III Всероссийском съезде анатомов, зоологов и гистологов в 1927 г. Н. К. Кольцов высказал и развил взгляд, который позже был положен в основу всей молекулярной биологии, а именно, что сущность явлений наследственности надо искать в молекулярных структурах тех веществ в клетке, которые являются носителями этих свойств. Он развил матричную теорию ауторепродукции хромосом, считая, что исходная хромосома является матрицей (шаблоном) для; дочерней хромосомы. Конкретные мeханизмы размножения наследственных молекул оказались иными, однако идейные принципы современных представлений о репродукции молекул были созданы Н. К. Кольцовым.

Крупный вклад в генетику был внесен в 1920-1940 гг. Н. И. Вавиловым. В предложенном им законе рядов гомологичной изменчивости и центров генофонда показано эволюционное происхождение направленности мутаций у родственных форм. Все это позволило Н. И. Вавилову (1936) обосновать такой подход к проблемам вида, который позволял представить вид как сложную систему в определенных условиях окружающей среды. Н. И. Вавилов творчески обосновал учение о генетических основах селекции (см. Искусственный отбор).

В области мед. Г. наша страна уже в 30-е гг. 20 в. заняла ведущее положение в мире. В особенности это проявилось в области Г. нервных болезней, изучение которых прободалось под руководством С. Н. Давиденкова. Им были обнаружены признаки, связанные с неполным проявлением генов и их гетерозиготностью при различных нервных болезнях. Давиденков описал большое число наследственных факторов, коррелятивно влияющих на нервную систему. Он охарактеризовал и классифицировал более ста заболеваний ц. н. с. и сделал первую попытку обобщить и представить данные об эволюции генофонда человечества.

Т. о., к 40-м гг. 20 в. Г. как наука достигла значительных успехов, а советская Г. заняла ведущее место в мировой науке о наследственности и изменчивости. Однако по-прежнему было принято считать, что материальной основой гена является белок. В 1944 г. Эйвери (О. Т. Avery), Мак-Лауд (G. М. MacLeod) и Мак-Карти (М. McCarty) доказали, что веществом, ответственным за передачу наследственных признаков у Diplococcus pneumoniae, является дезоксирибонуклеиновая к-та (ДНК). Это явилось стимулом для изучения хим., физ. и генетической сущности ДНК, началом периода молекулярной Г. Вслед за открытием трансформации (см.) большую роль в развитии Г. сыграло открытие полового процесса у бактерий - конъюгации (см. Конъюгация у бактерий) и способности фагов переносить генетический материал от одних бактерий к другим - так наз. трансдукции (см.). Именно с этого времени генетики начинают работать на организмах, обладающих относительной генетической простотой, т. е. на бактериях и на бактериальных вирусах.

Исключительным событием в Г. явилась расшифровка структуры молекулы ДНК Дж. Уотсоном и Ф. Криком (1953). Это открытие сделало возможным раскрытие тайны генетического кода (см.). Благодаря расшифровке генетического кода оказался разгаданным механизм последовательного соединения остатков аминокислот в строящихся молекулах полипептидов и белков. За этим последовали другие открытия: синтез генома фага X174 (А. Корнберг с соавт., 1967), выделение из E. coli lac-оперона [Шапиро (J.Shapiro) с соавт., 1969], выделение гена, управляющего синтезом рибосомальной РНК [Колли (Colli), Ойши (Oishi) и соавт., 1970; Спадари (Spadari) и соавт., 1971], выделение гена, контролирующего синтез тирозиновой транспортной РНК [Маркс (Marks) и соавт., 1971], выделение генов II области фага Т4 [Голдберг (I. Н. Goldberg, 1969], химический синтез гена аланиновой транспортной РНК дрожжей, состоящего из 77 нуклеотидов (X. Корана и др., 1968).

Следующим этапом развития молекулярной Г. было создание концепции о передаче генетической информации. Эта концепция получила название «центральной догмы молекулярной биологии». Ее содержание сводилось к тому, что передача генетической информации идет лишь в одном направлении: ДНК-> иРНК-> белок. Между тем исследованиями Темина (H. Temin, 1970) и Балтимора (D. Baltimore, 1970) было установлено, что опухолевые РНК-содержащие вирусы обладают ферментом, под влиянием к-рого вирусная РНК становится матрицей для синтеза ДНК, т. е. осуществляется обратная передача генетической информации (обратная транскрипция) с молекул РНК на ДНК. Этот фермент получил название «обратная транскриптаза». Открытие этого явления имеет глубокое методологическое значение, т. к. свидетельствует о том, что хотя генетический код зашифрован в молекулах ДНК или РНК, но сущность наследственности этим не ограничивается, а заключается во взаимодействии белков и нуклеиновых к-т. Это подтверждается и тем, что все генетические процессы, связанные с ДНК, требуют для своего осуществления наличия ферментов, т. е. белков. В частности, такие процессы, как репликация, рекомбинация, мутация, репарация поврежденной хим. и физ. факторами молекулы ДНК, требуют участия соответствующих ферментов, т. е. сущность наследственности заключается во взаимодействии ДНК, РНК и белка в клетке.

Наряду с изучением хромосомных факторов наследственности большое теоретическое значение имеет выяснение роли так наз. внехромосомных факторов наследственности у бактерий - эписом. К эписомам относятся умеренные бактериофаги, половые факторы, факторы множественной резистентности к лекарственным веществам и бактериоциногенные факторы (см. Эписомы). Для мед. генетиков проблема эписом представляет собой интерес, т. к. получены экспериментальные данные, свидетельствующие о том, что гены, определяющие вирулентность бактерий, имеют не только хромосомную природу, но часто входят и в состав эписом. Достаточно отметить, что патогенные свойства некоторых бактерий, как, напр., возбудителя дифтерии, ботулизма, а также патогенных стафилококков и стрептококков, связаны с лизогенизацией их бактериофагами, имеющими в составе ДНК гены, детерминирующие синтез токсических продуктов. Выделение таких лизогенных бактерий из смеси с профагами приводило к возникновению авирулентных культур.

Т. о., историю развития Г. можно разделить на три этапа. Первый этап - период классической генетики (1900-1930), обусловленный созданием теории дискретной наследственности (менделизм). Второй этап (1930-1953) характеризуется углублением принципов классической Г., но вместе с тем и пересмотром ряда ее положений. В это время были открыты возможности искусственного получения мутаций, обнаружено и доказано сложное строение гена, установлено, что именно ДНК, а не белок, является материальным носителем наследственности (см.).

Третьим этапом развития Г. можно считать период ее развития с 1953 г., когда практически полностью была выявлена генетическая роль молекул ДНК и раскрыта ее структура. Дальнейшие исследования в этой области, а особенно в области ДНК-зависимого синтеза белка, неразрывно связали Г. с биохимией.

Начиная с 1953 г. особенно интенсивно идет проникновение Г. в смежные науки, в частности особое значение приобретает биохимическая генетика (см.) и медицинская генетика (см.).

Последовательное применение принципа «один ген - один фермент» (т. е. один ген ответственен за синтез одного фермента) дало возможность выяснить механизм возникновения ряда наследственных дефектов обмена у человека и установить, нарушение синтеза какого именно фермента или вещества вызывает такие болезни человека, как фенил кетонурия, алкаптонурия, тирозиноз, альбинизм, гемофилия, различные формы наследственного кретинизма, серповидноклеточной анемии и других гемоглобинопатий и т. д.

В этот же период развивается учение о хромосомных болезнях человека. В 1956 г. впервые удалось определить истинное диплоидное число хромосом человека (46), а уже в 1959 г. установить, что при болезни Дауна во всех клетках тела человека обнаруживается лишняя 21-я хромосома, в результате чего был сделан вывод, что это заболевание вызвано нерасхождением пар хромосом 21 при образовании гамет (обычно яйцеклетки) .

Почти одновременно было установлено, что три формы врожденных аномалий пола (синдром Клайнфелтера, синдром Шерешевского-Тернера и аномалия, ведущая к умственной отсталости и бесплодию) вызваны нарушением набора половых хромосом. Выяснилось, что все эти три формы возникают в результате нерасхождения половых хромосом при образовании гаметы. Наряду с этими типичными хромосомными болезнями описано более 200 различных синдромов, вызываемых более сложными типами нерасхождения хромосом.

Открытие роли хромосом в возникновении многих врожденных аномалий и наследственных заболеваний привело к бурному развитию цитогенетики (см.) и ее прочной связи с медициной.

Цитогенетика стремительно проникает в онкологию. Выяснено значение хромосомных аномалий соматических клеток и соматического отбора в развитии злокачественных опухолей. Установлено, что опухолевые клетки имеют, как правило, аномальные хромосомные комплексы и что в ходе канцерогенеза происходит интенсивная конкуренция между клетками разного кариотипа и генотипа (см. Генетика соматических клеток).

Выявление большого числа наследственных болезней эндокринной системы, являющихся следствием аномального набора половых хромосом, привело к тесному контакту между Г. и эндокринологией.

Отмечается все большее проникновение Г. в иммунологию и особенно в радиобиологию. Получены экспериментальные данные, позволяющие сделать вывод о том, что в основе лучевой болезни лежит повреждение наследственных элементов значительной части клеток организма.

Стремительное развитие Г. в 60-е гг. 20 в. не могло не оказать влияния на ряд смежных с нею дисциплин. Было продемонстрировано интенсивное действие естественного отбора в отношении генных мутаций, некоторых типов хромосомных перестроек. Все это привело к созданию эволюционной Г. (см. Эволюционное учение), изучающей распространение и закрепление ряда мутаций в ходе естественного отбора и при видообразовании. Именно методами эволюционной Г. (в опытах с микроорганизмами и насекомыми) было показано, что наследственное приспособление к окружающей среде совершается не в результате адекватного изменения наследственных свойств индивидуального организма под воздействием внешнего фактора, а в результате направленного отбора наследственных изменений, возникающих независимо от того фактора среды, к к-рому идет приспособление.

Интенсивно развивается учение о сбалансированном наследственном полиморфизме человека, заключающемся в существовании в популяциях человека не менее двух аллелей одного и того же гена, причем оба аллеля (а иногда и многие аллели) встречаются с частотой, исключающей распространение менее частого аллеля без участия интенсивного отбора. Так, помимо 15 систем антигенов эритроцитов (групп крови А, В, 0, NH, резус и т. д.), открывается большое число групп лейкоцитов и тромбоцитов, белков плазмы, различных ферментов, наследственных систем выделения и обмена и т. п. Обнаружение резких наследственных различий в реакции на некоторые медикаменты уже привело к бурному развитию совершенно новой области мед. Г.- фармакогенетики (см.). Накапливается все большее количество данных о том, что эта наследственная биохим, разнородность человечества в пределах его нормы возникает под влиянием отбора, причем в большинстве случаев отбирающим фактором явились микробные инфекции. Это подтвердилось различием наследственных вариантов гемоглобина, повышенной восприимчивостью людей с группой крови А к оспе и т. д.

Таким образом, генетика изучает и анализирует основные биол, процессы на молекулярном уровне (биосинтез, аутосинтез ДНК и гена), клеточном (физиол. Г., цитогенетика), индивидуальном (Г. индивидуальных различий, физиология размножения) и популяционном (Г. популяций), раскрывает механизмы индивидуального и филогенетического развития.

Г. устанавливает связи с цитологией, селекцией, эволюционным учением, систематикой, экспериментальной эмбриологией, биохимией, биофизикой, кибернетикой, медициной, микробиологией, иммунологией, радиобиологией. Каждую из этих наук Г. обогащает своими методами и достижениями, становясь их неотъемлемой частью, и в то же время сама обогащается данными и методами этих дисциплин. Именно это делает Г. важнейшим орудием познания сущности жизни. Раскрыв многие тайны природы, Г. сделала тем самым неоценимый вклад в развитие материалистического естествознания.

Перед Г. стоят важные задачи, вытекающие из уже установленных общих закономерностей наследственности и изменчивости. К ним прежде всего относится изучение механизма изменения гена, репродукции генов и хромосом, действие генов и контролирование ими элементарных реакций и образования сложных признаков и свойств организма в целом, взаимосвязь процессов наследственной изменчивости и отбора в развитии органической природы. Кроме того, перед Г. стоят и более близкие задачи, разрешение которых необходимо для практики, особенно для клин, медицины.

Генетика и практика

Г. как наука, стоящая на переднем крае научно-технической революции, опираясь на открытые ею законы, вносит существенный вклад во многие отрасли человеческой деятельности. Благодаря успехам Г. заложены основы микробиол, промышленности, значение к-рой все возрастает. Производство антибиотиков, аминокислот и других веществ базируется на использовании радиационных и хим. мутантов бактерий, вирусов и др.

Успехи Г. растений способствовали резкому увеличению продуктивности всех основных с.-х. культур: пшеницы, подсолнечника, кукурузы, сахарной свеклы и др. В целом работа генетиков и селекционеров позволила серьезно улучшить производство пищевых ресурсов на всей планете.

Особенно важное значение имеет Г. для решения многих мед. проблем, особенно в борьбе с инфекционными и наследственными болезнями. Только благодаря успехам Г. микроорганизмов получены продуценты антибиотиков, эффективность синтеза которых в сотни и тысячи раз больше, чем у диких штаммов этих микробов.

Особое значение для мед. практики имело обнаружение японскими исследователями Ватанабе (Т. Watanabe, 1959) и Акиба (Т. Akiba, 1959) у бактерий факторов множественной резистентности (R-факто-ров) к лекарственным веществам.

Для наследственных болезней в зависимости от того, где локализован измененный ген (аутосома или половая хромосома) и каково его взаимоотношение с нормальным аллелем (доминантная или рецессивная мутация), характерны три основных типа наследования: аутосомно-доминантный, аутосомно-рецессивный и сцепленный с полом, или ограниченный полом (см. Наследование). При заболеваниях, наследуемых по аутосомно-доминантному типу, больные мальчики и девочки рождаются с одинаковой частотой, т. к. мутационный ген проявляется уже в гетерозиготном состоянии. При заболеваниях, наследуемых по аутосомно-рецессивному типу, мутационный ген проявляется лишь в гомозиготном состоянии. При болезнях, передача которых ограничена полом (Х-хромосомный тип), действия мутационного гена проявляются только у мужчин, т. е. у гетерогаметного пола (гемофилия А, цветовая слепота и др.).

Дальнейшее углубление представлений о характере наследования различных заболеваний и особенно дальнейшее изучение влияния различных факторов окружающей среды на проявление мутационных генов позволяет яснее наметить пути профилактики, диагностики и лечения наследственных болезней (см.). Большое значение в этом отношении имеет разработка микробиол, и других экспресс-методов выявления наследственных болезней обмена. Установление этиол, фактора болезни открывает пути лечения: исключение (или ограничение) из числа продуктов питания тех соединений, метаболизм которых в организме нарушен из-за блокирования какого-либо фермента; заместительная терапия этим ферментом. В профилактике наследственных болезней огромная роль отводится системе медико-генетических консультаций (см.), значение которых все возрастает, особенно в ходе разработки методов определения гетерозиготного носительства и установления природы распространения и частоты генных и хромосомных наследственных болезней. Своевременное установление наследственной природы заболевания и типа наследования позволяет более успешно разрабатывать методы предупреждения развития болезни, особенно в раннем возрасте, и ее лечения.

Особый интерес и значение для медицины представляет быстро развивающаяся область генетики, получившая название генной инженерии (см. Генная инженерия , Генотерапия), суть к-рой заключается во введении в геном генетического материала, изменяющего наследственные свойства организма. Для осуществления генной инженерии необходимы, с одной стороны, селекция и выделение генов и, с другой - введение этих генов в геномы клеток выбранных организмов.

Большое внимание уделяется изучению механизма репарации повреждений клеточного генома. Исследования, вначале проведенные на микроорганизмах, показали, что бактериальные клетки обладают специальными системами, которые восстанавливают повреждения генетического материала (ДНК), полученные при действии ряда хим. и физ. агентов, и обеспечивают относительную устойчивость клеток к действию этих агентов. Репарация повреждения ДНК осуществляется при участии ряда ферментов, детерминируемых определенными генами (см. Репарация генетических повреждений). Репарирующие системы, впервые открытые у бактерий, присущи также и клеткам человека и животных. Напр., клетки Xeroderma pigmentosum (наследственная болезнь человека, приводящая к раку кожи) гораздо чувствительнее к УФ-облучению, чем нормальные клетки, т. к. они не могут восстанавливать участки ДНК, поврежденные ультрафиолетовыми лучами, из-за отсутствия соответствующих ферментных систем. В то же время клетки рака глаз крупного рогатого скота способны к репарации поврежденной ДНК, т. к. они содержат необходимые для этого ферменты.

Наличие систем, контролирующих репарацию ДНК, имеет общебиол. значение. Если бы механизм ликвидации нарушения структур ДНК отсутствовал, то организм оказался бы совершенно беззащитным, а химиотерапия и лекарственная терапия были бы невозможными. Интенсивно ведущиеся исследования по изучению механизма образования ферментов репарирующих систем являются весьма перспективными.

Современная Г., несмотря на уже достигнутые значительные успехи в изучении молекулярных основ наследственности, продолжает развиваться на молекулярном, субмолекулярном, клеточном, тканевом, организменном и популяционном уровнях и стала ключевой наукой современной биологии, тесно связанной в практическом отношении с сельским хозяйством, медициной, космической биологией, учением о биосфере, теорией эволюции, антропологией и общим учением о человеке.

Развитие Г. определяется ее диалектическим взаимодействием с физикой, химией, математикой и цитологией. Г. подходит к пониманию наследственности, руководствуясь принципами интеграции, целостности ее организации, и именно это приближает ее к познанию сущности жизни, дает качественно новые методы для управления ею, что позволило назвать этот этап развития Г. синтетическим. В целом же Г., как и другие науки, в 60-70-е гг. 20 в. переходит от стихийного обнаружения диалектики в основных законах жизни к сознательному использованию материалистической диалектики.

Основные центры генетических исследований и органы печати

В СССР главными центрами исследований по Г. являются: Ин-т общей генетики АН СССР, Ин-т биологии развития АН СССР, Ин-т молекулярной биологии АН СССР, Радиобиологический отдел Ин-та атомной энергии АН СССР, Ин-т мед. генетики АМН СССР, Ордена Трудового Красного Знамени Ин-т эпидемиологии и микробиологии имени почетного академика Н. Ф. Гамалеи АМН СССР, Ин-т вирусологии имени Д. И. Ивановского АМН СССР. Исследования в области мед. Г. ведутся во многих клин, ин-тах АМН СССР и М3 СССР и союзных республик, в Ин-те цитологии и генетики Сибирского отделения АН СССР (Новосибирск), Ин-те генетики и цитологии АН БССР (Минск), Ин-те цитологии АН СССР (Ленинград), Ин-те генетики и селекции промышленных микроорганизмов Главмикробиопрома (Москва), Секторе молекулярной биологии и генетики АН УССР (Киев), а также на соответствующих кафедрах МГУ, ЛГУ и других ун-тов и медвузов страны.

В 1965 г. организовано Всесоюзное об-во генетиков и селекционеров им. Н. И. Вавилова с отделениями на местах. Г. преподают во всех ун-тах, мед. и с.-х. вузах СССР.

Генетические исследования интенсивно ведутся в других социалистических странах. Г. развита в Великобритании, Индии, Италии, США, Франции, ФРГ, Швейцарии, Швеции, Японии и др. Каждые 5 лет собираются международные конгрессы по Г.

Основными печатными органами, систематически публикующими статьи по Г., являются: журнал «Генетика» АН СССР, журнал «Цитология и генетика» АН УССР. Статьи по Г. печатают также многие биол, и мед. журналы, напр. «Цитология», «Радиобиология», «Молекулярная биология».

За рубежом статьи по Г. печатаются в «Annual Review of Genetics»* «Theoretical and Applied Genetics», «Biochemical Genetics», «Molecular and General Genetics», «Heredity»> «Mutation Research», «Genetics», «Hereditas», «Journal of Heredity», «Canadian Journal of Genetics and Cytology», «Japanese Journal of Genetics», «Genetica Polonica», «Indian Journal of Genetics and Plant Breeding».

Библиография: Вавилов H. И. Избранные сочинения, Генетика и селекция, М., 1966, библиогр.; Дубинины. П. Горизонты генетики, М., 1970, библиогр.; он же, Общая генетика, М., 1976, библиогр.; Дубинины. П. и Глем-боцкий Я. Л. Генетика популяций и селекция, М., 1967, библиогр*; История биологии с начала 20-го века до наших дней, под ред. Л.Я.Бляхера, М., 1975, библиогр.; Классики советской генетики 1920-1940, под ред. П. М. Жуковского, Л., 1968; Л о-б а ш e в М. Е. Генетика, Л., 1967, библиогр.; Медведевы. Н. Практическая генетика, М., 1968, библиогр.; Мендель Г. Опыты над растительными гибридами, М., 1965, библиогр.; Морган Т. Избранные работы по генетике, пер. с англ., М.-Л., 1937, библиогр.; P иг ер Р. и Михаэлис А. Генетический и цитогенетический словарь, пер. с нем., М., 1967, библиогр.; Сэджер Р. и Райн Ф. Цитологические и химические основы наследственности, пер. с англ., М., 1964.

Периодические издания - Генетика, М., с 1965; Успехи современной генетики, М., с 1967; Цитология и генетика, Киев, с 1967; Annual Review of Genetics, Palo Alto, с 1967; Biochemical Genetics, N. Y., с 1967; Genetics, Brooklyn - N.Y., с 1916; Hereditas, Lund, с 1920; Journal of Heredity, Washington, с 1910; Molecular and General Genetics, В., с 1908; Mutation Research, Amsterdam, с 1964; Theoretical and Applied Genetisa, В., с 1929.

H. П. Дубинин, И. И. Олейник.