Домой / Рвота / Комплексный анализ на аминокислоты (32 показателя) (моча). Комплексный анализ на аминокислоты (32 показателя) (моча) Анализ на аминокислоты в инвитро

Комплексный анализ на аминокислоты (32 показателя) (моча). Комплексный анализ на аминокислоты (32 показателя) (моча) Анализ на аминокислоты в инвитро

Аминокислоты - органические соединения, являющиеся основной составляющей частью протеинов (белков). Нарушение обмена аминокислот является причиной многих заболеваний (печени и почек). Анализ аминокислот (мочи и крови) является основным средством оценки степени усвоения пищевого белка, а также метаболического дисбаланса, лежащего в основе многих хронических нарушений.

Биоматериалом для комплексного анализа на аминокислоты в Лаборатории Гемотест может служить кровь или моча.

Исследуется следующие незаменимые аминокислоты: аланин, аргинин, аспарагиновая кислота, цитруллин, глутаминовая кислота, глицин, метионин, орнитин, фенилаланин, тирозин, валин, лейцин, изолейцин, гидроксипролин, серин, аспарагин, α-аминоадипиновая кислота, глутамин, β-аланин, таурин, гистидин, треонин, 1-метилгистидин, 3-метилгистидин, γ-аминомасляная кислота, β-аминоизомасляная кислота, α-аминомасляная кислота, пролин, цистатионин, лизин, цистин, цистеиновая кислота.

Аланин – важный источник энергии для головного мозга и центральной нервной системы; укрепляет иммунную систему путем выработки антител;активно участвует в метаболизме сахаров иорганических кислот. Может быть сырьем для синтеза глюкозы в организме, это делает его важным источником энергии и регулятором уровня сахара в крови.

Снижение концентрации: хронические болезни почек, кетотическая гипогликемия.

Повышение концентрации: гипераланинемия, цитруллинемия (умеренное повышение), болезнь Кушинга, подагра, гипероротининемия, гистидиемия, дефицит пируваткарбоксилазы,лизинурическая белковая непереносимость.

Аргинин является условно заменимой аминокислотой. Участвует в цикле переаминирования и выведения из организма конечного азота, то есть продукта распада отработанных белков. От мощности работы цикла (орнитин - цитруллин - аргинин) зависит способность организма создавать мочевину и очищаться от белковых шлаков.

Снижение концентрации:3 дня после оперативного вмешательства на брюшной полости, хроническая почечная недостаточность, ревматоидный артрит.

Повышение концентрации: гипераргининемия, в некоторых случаях гиперинсулинемии II типа.

Аспарагиновая кислота входит в состав белков, играет важную роль в реакциях цикла мочевины и переа-минирования, участвует в биосинтезе пуринов и пиримидинов.

Снижение концентрации: 1 сутки после оперативного вмешательства.

Повышение концентрации: моча – дикарбоксильная аминоацидурия.

Цитруллин повышает энергообеспечение, стимулирует иммунную систему, в процессах обмена веществ превращается в L-аргинин. Обезвреживает аммиак, повреждающий клетки печени.

Повышение концентрации цитруллина: цитруллинемия, болезни печени, интоксикация аммонием, дефицит пируват-карбоксилазы, лизинурическое нарушение толерантности к белку.

Моча - цитруллинемия, болезнь Хартнупа, аргининосукцинат-ацидурия.

Глутаминовая кислота является нейромедиатором, передающим импульсы в центральной нервной системе. Играет важную роль в углеводном обмене и способствует проникновению кальция через гематоэнцефалический барьер. Снижение концентрации: гистидинемия, хроническая почечная недостаточность.

Повышение концентрации: рак поджелудочной железы, подагра, глутаминовая,ацидурия, ревматоидный артрит. Моча – дикарбоксильная аминоацидурия.

Глицин является регулятором обмена веществ, нормализует процессы возбуждения и торможения в центральной нервной системе, обладает антистрессорным эффектом, повышает умственную работоспособность.

Снижение концентрации: подагра, сахарный диабет.

Повышение концентрации: септицемия, гипогликемия, гипераммониемия 1 типа, тяжелые ожоги, голодание, пропионовая ацидемия, метилмалоновая ацидемия, хроническая почечная недостаточность. Моча – гипогликемия, цистинурия, болезнь Хартнупа, беременность, гиперпролинемия,глицинурия, ревматоидный артрит.

Метионин незаменимая аминокислота, помогающая переработке жиров, предотвращая ихотложение в печени и стенках артерий. Синтез таурина и цистеина зависит от количества метионина в организме. Способствует пищеварению, обеспечивает дезинтоксикационныепроцессы, уменьшает мышечную слабость, защищает от воздействия радиации,полезна при остеопорозе и химической аллергии.

Снижение концентрации: гомоцистинурия, нарушение белкового питания.

Повышение концентрации: карциноидный синдром, гомоцистинурия, гиперметионинемия, тирозинемия, тяжелые заболевания печени.

Орнитин помогает высвобождению гормона роста, который способствует сжиганию жиров в организме. Необходим для иммунной системы, участвует в дезинтоксикационных процессах и восстановлении пече-ночных клеток.

Снижение концентрации: карциноидный синдром, хроническая почечная недостаточность.

Повышение концентрации: спиральная атрофия хориоидной оболочки и сетчатки, тяжелые ожоги,гемолиз.

Фенилаланин - незаменимая аминокислота, в организме она может превращаться в тирозин, который, в свою очередь, используется в синтезе двух основных нейромедиаторов: допамина и норадреналина. Влияет на настроение, уменьшает боль, улучшает память и способность к обучению, подавляет аппетит.

Повышение концентрации: преходящая тирозинемия новорожденных, гиперфенилаланинемия,сепсис, пе-ченочная энцефалопатия, вирусный гепатит, фенилкетонурия.

Тирозин является предшественником нейромедиаторов норадреналина и дофамина.Участвует в регуляциинастроения; недостаток тирозина приводит к дефициту норадреналина, что приводит к депрессии. Подавляет аппетит, уменьшает отложения жиров, способствует выработке мелатонина и улучшает функции надпочечников, щитовидной железы и гипофиза, также участвует в обмене фенилаланина. Тиреоидные гормоны образуются при при-соединении к тирозину атомов йода.

Снижение концентрации: поликистоз почек, гипотермия, фенилкетонурия, хроническая почечная недоста-точность, карциноидный синдром, микседема, гипотиреоидизм, ревматоидный артрит.

Повышение концентрации: гипертирозинемия, гипертиреоидизм, сепсис.

Валин незаменимая аминокислота, оказывающая стимулирующее действие. Необходима для метаболизма в мышцах, восстановления поврежденных тканей и для поддержания нормального обмена азота в организме, может быть использован мышцами в качестве источника энергии.

Снижение концентрации: гиперинсулинизм, печеночная энцефалопатия.

Повышение концентрации: кетоацидурия, гипервалинемия,недостаточное белковое питание, карциноидный синдром, острое голодание.

Лейцин и изолейцин - защищают мышечные ткани и являются источниками энергии, а также способствуют восстановлению костей, кожи, мышц. Способны понижать уровень сахара в крови и стимулировать выделение гормона роста.

Снижение концентрации: острое голодание, гиперинсулинизм, печеночная энцефалопатия.

Повышение концентрации: кетоацидурия, ожирение, голодание, вирусный гепатит.

Гидроксипролин содержится в тканях практически всего организма, входит в состав коллагена, на долю которого приходится большая часть белка в организме млекопитающих. Синтез гидроксипролина нару- шается при дефиците витамина С.

Повышение концентрации: гидроксипролинемия, уремия, цирроз печени.

Серин относится к группе заменимых аминокислот, участвует в образовании активных центров ряда ферментов, обеспечивая их функцию. Важен в биосинтезе других заменимых аминокислот: глицина, цистеина, метионина, триптофана.Серин является исходным продуктом синтеза пуриновых и пиримидиновых оснований, сфинголипидов, этаноламина, и других важных продуктов обмена веществ.

Снижение концентрации: недостаточность фосфоглицерат дегидрогеназы, подагра.

Повышение концентрации серина: непереносимость белка. Моча – ожоги, болезнь Хартнупа.

Аспарагин необходим для поддержания баланса в процессах, происходящих в центральной нервной

системе; препятствует как чрезмерному возбуждению, так и излишнему торможению, участвует в процессах синтеза аминокислот в печени.

Повышение концентрации: ожоги, болезнь Хартнупа, цистиноз.

Альфа-аминоадипиновая кислота - метаболит основных биохимических путей лизина.

Повышение концентрации: гиперлизинемия, альфа-аминоадипиновая ацидурия, альфа-кетоадипиновая ацидурия, синдром Рея.

Глутамин выполняет ряд жизненно важных функций в организме: участвует в синтезе аминокислот, углеводов, нуклеиновых кислот, цАМФ и ц-ГМФ, фолиевой кислоты, ферментов, осуществляющих окислительно-восстановительные реакции (НАД), серотонина, н-аминобензойной кислоты; обезвреживает аммиак; превращается в аминомасляную кислоту (ГАМК); способен повышать проницаемость мышечных клеток для ионов калия.

Снижение концентрации глутамина: ревматоидный артрит

Повышение концентрации: Кровь – Гипераммониемия, вызванная следующими причинами: печеночная кома, синдром Рея, менингит, кровоизлияние в мозг, дефекты цикла мочевины, недостаточность орнитинтранскарбамилазы, карбамоилфосфатсинтазы, цитруллинемия, аргининсукциновая ацидурия, гиперорнитинемия,гипераммониемия, гомоцитруллинемия (HHH syndrome), в некоторых случаях гиперлизиемия 1 типа, лизинурическая белковая непереносимость. Моча – Болезнь Хартнупа, генерализованная аминоацидурия, ревматоидый артрит.

β-аланин – является единственной бета-аминокислотой, образуется из дигидроурацила и карнозина.

Повышение концентрации: гипер-β -аланинемия.

Таурин - способствуют эмульгированию жиров в кишечнике, обладает противосудорожной активностью, оказывает кардиотропное действие, улучшает энергетические процессы, стимулирует репаративные процессы при дистрофических заболеваниях и процессах, сопровождающихся нарушением метаболизма тканей глаза, способствует нормализации функции клеточных мембран и улучшению обменных процессов.

Снижение концентрации таурина: Кровь - Маниакально-депрессивный синдром, депрессивные неврозы

Повышение концентрации таурина: Моча - Сепсис, гипер-β-аланинемия, недостаточность фолиевой кислоты (В9), первый триместр беременности, ожоги.

Гистидин входит в состав активных центров множества ферментов, является предшественником в био-синтезе гистамина. Способствует росту и восстановлению тканей. В большом количестве содержится в гемоглобине; используется при лечении ревматоидных артритов, аллергий, язв и анемии. Недостаток гистидина может вызвать ослабление слуха.

Снижение концентрации гистидина: Ревматоидный артрит

Повышение концентрации гистидина: Гистидинемия, беременность, болезнь Хартнупа, генерализован-

ная аминоацидурия.

Треонин - это незаменимая аминокислота, способствующая поддержанию нормального белкового обмена в организме, важна для синтеза коллагена и эластина, помогает работе печени, участвует в обмене жиров, стимулирует иммунитет.

Снижение концентрации треонина: Хроническая почечная недостаточность, ревматоидный артрит.

Повышение концентрации треонина: Болезнь Хартнупа, беременность, ожоги, гепатолентикулярная дегенерация.

1-метилгистидин основное производное ансерина. Фермент карнозиназа превращает ансерин в β-аланин и 1-метилгистидин. Высокие уровни 1-метилгистидина, как правило, подавляют фермент карнозиназу и увеличивают концентрации ансерина. Уменьшение активности карнозиназ также встречается у пациентов с болезнью Паркинсона, рассеянным склерозом и у пациентов после инсульта. Дефицит витамина Е может привести к 1–метилгистидинурии, вследствие увеличения окислительных эффектов в скелетных мышцах.

Повышение концентрации: хроническая почечная недостаточность, мясная диета.

3-метигистидин является показателем уровня распада белков в мышцах.

Снижение концентрации: голодание, диета.

Повышение концентрации: хроническая почечная недостаточность, ожоги, множественные травмы.

Гамма-аминомасляная кислота - содержится в ЦНС и принимает участие в нейромедиаторных и метаболических процессах в мозге. Лиганды рецепторов ГАМК рассматриваются, как потенциальные средства для лечения различных расстройств психики и центральной нервной системы, к которым относятся болезнь Паркинсона и Альцгеймера, расстройства сна (бессонница, нарколепсия), эпилепсия. Под влиянием ГАМК активируются также энергетические процессы мозга, повышается дыхательная активность тканей, улучшается утилизация мозгом глюкозы, улучшается кровоснабжение.

Бета (β) - аминоизомасляная кислота - небелковая аминокислота является продуктом катаболизма тимина и валина. Повышение концентрации: различные типы новообразований, болезни, сопровождающиеся усиленным разрушением нуклеиновых кислот в тканях, синдром Дауна, белковое недоедание, гипер-бета-аланинемия, бета-аминоизомасляная ацидурия, отравление свинцом.

Альфа (α) -аминомасляная кислота является основным промежуточным продуктом биосинтеза офталь-мовой кислоты. Повышение концентрации: неспецифические аминоацидурии, голодание.

Пролин - одна из двадцати протеиногенных аминокислот, входит в состав всех белков всех организмов.

Снижение концентрации: Хорея Хантингтона, ожоги

Повышение концентрации: Кровь – гиперпролинемия тип 1 (недостаточность пролиноксидазы), гиперпролинемия тип 2 (недостаточность пирролин-5-карбоксилат дегидрогеназы), недостаточность белкового питания у новорожденных. Моча – гиперпролиемия 1 и 2 типов, синдром Джозефа (тяжелая пролинурия), карциноидный синдром, иминоглицинурия, болезнь Вильсона-Коновалова (гепатолентикулярная дегенерация).

Цистатионин - cepоcoдержащая аминокислота, участвует в биосинтезе цистеина изметионина и серина.

Лизин – это незаменимая аминокислота, входящая в состав практически любых белков, необходима для роста, восстановления тканей, производства антител, гормонов, ферментов, альбуминов, оказывает противовирусное действие, поддерживает уровень энергии, участвует в формировании коллагена и восстановлении тканей, улучшает усвоение кальция из крови и транспорт его в костную ткань.

Снижение концентрации: карциноидный синдром, лизинурическая протеиноваянепереносимость.

Повышение концентраций: Кровь – гиперлизинемия, глутаровая ацидемия тип 2. Моча – цистинурия, гиперлизинемия, первый триместр беременности, ожоги.

Цистин в организме является важной частью белков, таких как иммуноглобулины, инсулин и соматостатин, укрепляет соединительную ткань. Снижение концентрации цистина: белковое голодание, ожоги.Повышение концентраций цистина: Кровь - сепсис, хроническая почечная недостаточность. Моча – Цистиноз, цистинурия, цистинлизинурия, первый триместр беременности.

Цистеиновая кислота - серосодержащая аминокислота. Промежуточный продукт обмена цистеина и цистина. Принимает участие в реакциях переаминирования, является одним из предшественников таурина.

В организме человека синтезируется лишь половина необходимых аминокислот, а остальные амино-кислоты – незаменимые (аргинин, валин, гистидин, изолейцин, лейцин, лизин, метионин, треонин, трип-тофан, фенилаланин) - должны поступать с пищей. Исключение из рациона какой-либо незаменимой аминокислоты из рациона ведет к развитию отрицательного азотистого баланса, клинически проявляющегося нарушением функций нервной системы, мышечной слабостью и другими признаками патологии обмена веществ и энергии.

Показания к назначению анализа:

  • Диагностика заболеваний, связанных с нарушением аминокислотного обмена.
  • Оценка состояния организма человека.

Необходимо соблюдать общие правила подготовки. Кровь на исследование необходимо сдавать натощак. Между последним приёмом пищи и взятием крови должно пройти не менее 8 часов.

Мочу для исследования собрать среднюю утреннюю порцию.

4150.00 р.

Стоимость услуги: Ростов-на-Дону

Взятие биоматериала оплачивается дополнительно

Взятие крови из периферической вены: 130.00 р.

99-10-115. Аминокислоты и ацилкарнитины в крови (42 показателя, метод ВЭЖХ-МС)

Номенклатура МЗРФ (Приказ №804н): B03.016.019.003 "Комплексное определение концентрации на аминокислоты (42 показателя) методом высокой эффективной жидкостной хроматографии в крови"

Биоматериал: Кровь ЭДТА

Срок выполнения (в лаборатории): 5 р.д. *

Описание

По возможности синтеза в организме существуют заменимые и незаменимые аминокислоты. К незаменимым аминокислотам относятся: аргинин, валин, изолейцин, лейцин, метионин, фенилаланин. К заменимым аминокислотам относятся: аланин, аспарагиновая кислота, глицин, глутаминовая кислота, тирозин. При дефекте ферментов на разных этапах трансформации может возникать накопление аминокислот и продуктов их превращения, и оказывать отрицательное воздействие на организм. Различают первичные (врожденные) и вторичные(приобретенные) нарушения метаболизма аминокислот. Врожденные заболевания обусловлены дефицитом ферментов и/или транспортных белков, которые связанны с метаболизмом аминокислот. Приобретенные нарушения аминокислот связаны с заболеваниями печени, ЖКТ, почек, при недостаточном или неадекватном питании, при новообразованиях.

Исследование помогает определить уровень аминокислот в крови, их производных, оценить состояние аминокислотного обмена. Недостаточное количество в рационе питания любой из аминокислот или ацилкарнитина может привести к нарушению окислительно-восстановительных процессов в организме, что может привести к нарушениям со стороны ЦНС. Возможна также слабость в мышцах и другие патологические состояния. Анализы на ацилкарнитины позволяет определить нарушение метаболизма органических и жирных кислот.

В данное исследование входит 42 показателя:

  • 3-гидроксибутирилкарнитин (C4OH)
  • 3-гидроксиизовалерилкарнитин (C5OH)
  • 3-гидроксимиристоилкарнитин (C14OH)
  • 3-гидроксиоктадеканоилкарнитин (3-гидроксистеароил, C18OH)
  • 3-гидроксиоктадеценоилкарнитин (3-гидроксиолеил, C18:1OH)
  • 3-гидроксипальмитоилкарнитин (C16OH)
  • 3-гидроксипальмитолеилкарнитин (C16:1OH)
  • L-карнитин свободный
  • Аланин (Ala)
  • Аргинин (Arg)
  • Ацетилкарнитин (С2)
  • Бутирилкарнитин (С4)
  • Валин (Val)
  • Гексадеценоилкарнитин (C16:1)
  • Гексаноилкарнитин (C6)
  • Глицин (Gly)
  • Деканоилкарнитин (C10)
  • Деценоилкарнитин (C10:1)
  • Додеканооилкарнитин (Лауроил,C12)
  • Изовалерилкарнитин (С5)
  • Лейцин+Изолейцин (Xle)
  • Метионин (Met)
  • Миристоилкарнитин (Тетрадеканоил, C14)
  • Миристолеилкарнитин (Тетрадеценоил, C14:1)
  • Октадеканоилкарнитин (Стеароил, C18)
  • Октадеценоилкарнитин (Олеил, C18:1)
  • Октаноилкарнитин (C8)
  • Октеноилкарнитин (C8:1)
  • Орнитин (Orn)
  • Гексадеканоилкарнитин (C16)
  • Пропионилкарнитин (C3)
  • Тетрадекадиеноилкарнитин (C14:2)
  • Тиглилкарнитин (С5:1)
  • Тирозин (Tyr)
  • Фенилаланин (Phe)
  • Цитруллин (Cit)
  • 3-гидроксигексаноилкарнитин (C6OH)
  • Декадиеноноилкарнитин (C10:2)
  • Додеценоилкарнитин (C12:1)
  • Пролин (Pro)
  • Адипилкарнитин (C6DC)
  • Линолеилкарнитин (C18:2)
По возможности синтеза в организме существуют заменимые и незаменимые аминокислоты. К незаменимым аминокислотам относятся: аргинин, валин, изолейцин,

Показания к назначению

  • подтверждение заболеваний, которые обусловлены нарушением обмена аминокислот и ацилкарнитинов в организме;
  • диагностика всех органов и систем организма.

Подготовка к исследованию

Интерпретация результатов/Информация для специалистов

Интерпретация результатов осуществляется с учетом возраста, особенностей питания, клинического состояния и других лабораторных данных показателей.
Повышение референсных значений: эклампсия; нарушение толерантности к фруктозе; диабетический кетоацидоз; почечная недостаточность; синдром Рейе.
Понижение референсных значений: гиперфункция коры надпочечников; лихорадка; болезнь Хартнупа; хорея Хантингтона; неадекватное питание, голодание (квашиоркор); синдром мальабсорбции при тяжелых заболеваниях желудочно-кишечного тракта; гиповитаминоз; нефротическом синдроме; лихорадка паппатачи (москитная, флеботомная); ревматоидный артрит.

С этой услугой чаще всего заказывают

* На сайте указан максимально возможный срок выполнения исследования. Он отражает время выполнения исследования в лаборатории и не включает время на доставку биоматериала до лаборатории.
Приведенная информация носит справочный характер и не является публичной офертой. Для получения актуальной информации обратитесь в медицинский центр Исполнителя или call-центр.

Аминокислоты - это органические соединения, являющиеся строительным материалом для белков и мышечных тканей. Нарушение обмена аминокислот является причиной многих заболеваний (печени и почек). Анализ аминокислот (мочи и крови) является основным средством оценки степени усвоения пищевого белка, а также метаболического дисбаланса, лежащего в основе многих хронических нарушений.

Состав исследования:

  • 1-метилгистидин (1MHIS).
  • 3-метилгистидин (3MHIS).
  • a-аминоадипиновая кислота (AAA).
  • a-аминомасляная кислота (AABA).
  • b-аланин (BALA).
  • b-аминоизомасляная кислота (BAIBA).
  • y-аминомасляная кислота (GABA).
  • Аланин (Ala).
  • Аргинин (Arg).
  • Аспарагин (ASN).
  • Аспарагиновая кислота (Asp).
  • Валин (Val).
  • Гидроксипролин (HPRO).
  • Гистидин (HIS).
  • Глицин (Gly).
  • Глутамин (GLN).
  • Глутаминовая кислота (Glu).
  • Изолейцин (ILEU).
  • Лейцин (LEU).
  • Лизин (LYS).
  • Метионин (Met).
  • Орнитин (Orn).
  • Пролин (PRO).
  • Серин (SER).
  • Таурин (TAU).
  • Тирозин (Tyr).
  • Треонин (THRE).
  • Фенилаланин (Phe).
  • Цистатионин (CYST).
  • Цистеиновая кислота (CYSA).
  • Цистин (CYS).
  • Цитруллин (Cit).
Аланин - принимает участие в выработке антител, синтезе глюкозы, деятельности центральной нервной системы. Количество аланина влияет на функционирование почек, возможность организма самоочищаться от шлаков белковой природы.

Аргинин - является условно заменимой аминокислотой, то есть она должна постоянно поступать в организм с пищей. Аргинин участвует в производстве оксида азота, способствует ускорению синтеза гормона роста и других гормонов, ускоряет заживление и укрепляет кровеносные сосуды. В организме присутствует в свободном виде и в составе белков. Аргинин лежит в основе синтеза орнитина.

Орнитин - стимулирует выделение инсулина и гормона роста. Он помогает защитить печень от воздействия токсических веществ, а также стимулирует регенерацию и восстановление печёночных клеток. Чрезвычайно важная роль орнитина связана с его участием в цикле мочеобразования, необходимого для вывода аммиака. Аммиак образуется при распаде белков и является ядовитым для организма веществом. Орнитин участвует в его переработке с образованием мочевины. Мочевина также оказывает токсическое действие, увеличивает нервную возбудимость. Благодаря орнитину эти токсины выводятся из организма.

Аспарагиновая кислота - участвует в реакциях переаминирования и цикла мочевины.

Цитруллин - стимулирует детоксикацию аммиака, поддерживает иммунитет. Он играет важную роль в метаболических процессах организма.

Глутаминовая кислота - влияет на усвоение кальция, углеводный обмен и является важным нейромедиатором.

Глицин - регулирует обмен веществ, улучшает мозговую деятельность.

Метеонин - предотвращает отложение жиров на стенках сосудов и в печени, улучшает пищеварение, защищает организм от воздействия токсичных веществ и радиации.

Фенилаланин - участвует в образовании нейромедиаторов, норадреналина и допамина, улучшает умственную деятельность, нормализует аппетит.

Тирозин - нормализует деятельность гипофиза, щитовидной железы, надпочечников, из него синтезируется норадреналин и дофамин.

Валин - регулирует мышечную деятельность, регенерирует поврежденные ткани. Необходим для поддержания нормального обмена азота в организме, может быть использован мышцами в качестве источника энергии.

Лейцин и изолейцин - участвуют в восстановительных процессах костей, мышц, кожных покровов, активируют выработку гормона роста, снижают уровень сахара в крови и являются источниками энергии. Снижение концентрации: острое голодание, гиперинсулинизм, печеночная энцефалопатия. Повышение концентрации: кетоацидурия, ожирение, голодание, вирусный гепатит.

Гидроксипролин - содержится в тканях практически всего организма, входит в состав коллагена, на долю которого приходится большая часть белка в организме млекопитающих. Синтез гидроксипролина нарушается при дефиците витамина С.

Повышение концентрации: гидроксипролинемия, уремия, цирроз печени.

Серин - относится к группе заменимых аминокислот, участвует в образовании активных центров ряда ферментов, обеспечивая их функцию. Важен в биосинтезе других заменимых аминокислот: глицина, цистеина, метионина, триптофана. Серин является исходным продуктом синтеза пуриновых и пиримидиновых оснований, сфинголипидов, этаноламина, и других важных продуктов обмена веществ.

Снижение концентрации: недостаточность фосфоглицератдегидрогеназы, подагра. Повышение концентрации серина: непереносимость белка. Моча - ожоги, болезнь Хартнупа.

Аспарагин - необходим для поддержания баланса в процессах, происходящих в центральной нервной системе; препятствует как чрезмерному возбуждению, так и излишнему торможению, участвует в процессах синтеза аминокислот в печени. Повышение концентрации: ожоги, болезнь Хартнупа, цистиноз.

Alpha-аминоадипиновая кислота - метаболит основных биохимических путей лизина. Повышение концентрации: гиперлизинемия, альфа-аминоадипиновая ацидурия, альфа-кетоадипиновая ацидурия, синдром Рея.

Глутамин - выполняет ряд жизненно важных функций в организме: участвует в синтезе аминокислот, углеводов, нуклеиновых кислот, цАМФ и ц-ГМФ, фолиевой кислоты, ферментов, осуществляющих окислительно-восстановительные реакции (НАД), серотонина, н-аминобензойной кислоты; обезвреживает аммиак; превращается в аминомасляную кислоту (ГАМК); способен повышать проницаемость мышечных клеток для ионов калия.

Снижение концентрации глутамина: ревматоидный артрит

Повышение концентрации: кровь - гипераммониемия, вызванная следующими причинами: печеночная кома, синдром Рея, менингит, кровоизлияние в мозг, дефекты цикла мочевины, недостаточность орнитинтранскарбамилазы, карбамоилфосфатсинтазы, цитруллинемия, аргининсукциновая ацидурия, гиперорнитинемия, гипераммониемия, гомоцитруллинемия (HHH syndrome), в некоторых случаях гиперлизиемия 1 типа, лизинурическая белковая непереносимость. Моча - болезнь Хартнупа, генерализованная аминоацидурия, ревматоидый артрит.

Beta-аланин - является единственной бета-аминокислотой, образуется из дигидроурацила и карнозина. Повышение концентрации: гипер-β -аланинемия.

Таурин - способствуют эмульгированию жиров в кишечнике, обладает противосудорожной активностью, оказывает кардиотропное действие, улучшает энергетические процессы, стимулирует репаративные процессы при дистрофических заболеваниях и процессах, сопровождающихся нарушением метаболизма тканей глаза, способствует нормализации функции клеточных мембран и улучшению обменных процессов.

Снижение концентрации таурина: кровь - маниакально-депрессивный синдром, депрессивные неврозы.

Повышение концентрации таурина: моча - сепсис, гипер-β-аланинемия, недостаточность фолиевой кислоты (В 9), первый триместр беременности, ожоги.

Гистидин - входит в состав активных центров множества ферментов, является предшественником в биосинтезе гистамина. Способствует росту и восстановлению тканей. В большом количестве содержится в гемоглобине; используется при лечении ревматоидных артритов, аллергий, язв и анемии. Недостаток гистидина может вызвать ослабление слуха.

Снижение концентрации гистидина: ревматоидный артрит. Повышение концентрации гистидина: гистидинемия, беременность, болезнь Хартнупа, генерализованная аминоацидурия.

Треонин - это незаменимая аминокислота, способствующая поддержанию нормального белкового обмена в организме, важна для синтеза коллагена и эластина, помогает работе печени, участвует в обмене жиров, стимулирует иммунитет.

Снижение концентрации треонина: хроническая почечная недостаточность, ревматоидный артрит. Повышение концентрации треонина: болезнь Хартнупа, беременность, ожоги, гепатолентикулярная дегенерация.

1-метилгистидин - основное производное ансерина. Фермент карнозиназа превращает ансерин в β-аланин и 1-метилгистидин. Высокие уровни 1-метилгистидина, как правило, подавляют фермент карнозиназу и увеличивают концентрации ансерина. Уменьшение активности карнозиназ также встречается у пациентов с болезнью Паркинсона, рассеянным склерозом и у пациентов после инсульта. Дефицит витамина Е может привести к 1-метилгистидинурии, вследствие увеличения окислительных эффектов в скелетных мышцах.

Повышение концентрации: хроническая почечная недостаточность, мясная диета.

3-метигистидин - является показателем уровня распада белков в мышцах.

Снижение концентрации: голодание, диета. Повышение концентрации: хроническая почечная недостаточность, ожоги, множественные травмы.

Gamma-аминомасляная кислота - содержится в ЦНС и принимает участие в нейромедиаторных и метаболических процессах в мозге. Лиганды рецепторов ГАМК рассматриваются, как потенциальные средства для лечения различных расстройств психики и центральной нервной системы, к которым относятся болезнь Паркинсона и Альцгеймера, расстройства сна (бессонница, нарколепсия), эпилепсия. Под влиянием ГАМК активируются также энергетические процессы мозга, повышается дыхательная активность тканей, улучшается утилизация мозгом глюкозы, улучшается кровоснабжение.

Beta-аминоизомасляная (β) - аминоизомасляная кислота - небелковая аминокислота, которая является продуктом катаболизма тимина и валина. Повышение концентрации: различные типы новообразований, болезни, сопровождающиеся усиленным разрушением нуклеиновых кислот в тканях, синдром Дауна, белковое недоедание, гипер-бета-аланинемия, бета-аминоизомасляная ацидурия, отравление свинцом.

Alpha-аминомасляная (α) - аминомасляная кислота является основным промежуточным продуктом биосинтеза офтальмовой кислоты. Повышение концентрации: неспецифические аминоацидурии, голодание.

Пролин - одна из двадцати протеиногенных аминокислот, входит в состав всех белков всех организмов.

Снижение концентрации: хорея Хантингтона, ожоги.

Повышение концентрации: кровь - гиперпролинемия тип 1 (недостаточность пролиноксидазы), гиперпролинемия тип 2 (недостаточность пирролин-5-карбоксилат дегидрогеназы), недостаточность белкового питания у новорожденных. Моча - гиперпролиемия 1 и 2 типов, синдром Джозефа (тяжелая пролинурия), карциноидный синдром, иминоглицинурия, болезнь Вильсона-Коновалова (гепатолентикулярная дегенерация).

Цистатионин - cepоcoдержащая аминокислота, участвует в биосинтезе цистеина изметионина и серина.

Лизин - это незаменимая аминокислота, входящая в состав практически любых белков, необходима для роста, восстановления тканей, производства антител, гормонов, ферментов, альбуминов, оказывает противовирусное действие, поддерживает уровень энергии, участвует в формировании коллагена и восстановлении тканей, улучшает усвоение кальция из крови и транспорт его в костную ткань.

Снижение концентрации: карциноидный синдром, лизинурическая протеиновая непереносимость.

Повышение концентраций: кровь - гиперлизинемия, глутаровая ацидемия тип 2. Моча - цистинурия, гиперлизинемия, первый триместр беременности, ожоги.

Цистин в организме - является важной частью белков, таких как иммуноглобулины, инсулин и соматостатин, укрепляет соединительную ткань. Снижение концентрации цистина: белковое голодание, ожоги. Повышение концентраций цистина: кровь - сепсис, хроническая почечная недостаточность. Моча - цистиноз, цистинурия, цистинлизинурия, первый триместр беременности.

Цистеиновая кислота - серосодержащая аминокислота. Промежуточный продукт обмена цистеина и цистина. Принимает участие в реакциях переаминирования, является одним из предшественников таурина.

В организме человека синтезируется лишь половина необходимых аминокислот, а остальные аминокислоты - незаменимые (аргинин, валин, гистидин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин) - должны поступать с пищей. Исключение какой-либо незаменимой аминокислоты из рациона ведет к развитию отрицательного азотистого баланса, клинически проявляющегося нарушением функций нервной системы, мышечной слабостью и другими признаками патологии обмена веществ и энергии.

Переоценить роль аминокислот в деятельности организма невозможно.

Показания:

  • диагностика наследственных и приобретенных заболеваний, связанных с нарушением метаболизма аминокислот;
  • дифференциальная диагностика причин нарушений азотистого обмена, выведения аммиака из организма;
  • мониторинг соблюдения диетотерапии и эффективности лечения;
  • оценка пищевого статуса и модификация питания.
Подготовка
Накануне сдачи анализа не рекомендуется употреблять в пищу овощи и фрукты, которые могут изменить цвет мочи (свёкла, морковь, клюква и т.п.), принимать диуретики.

Собирают строго утреннюю порцию мочи, выделенную сразу же после сна. Перед сбором мочи необходимо провести тщательный гигиенический туалет внешних половых органов. При первом утреннем мочеиспускании небольшое количество мочи (первые 1–2 сек) выпустить в унитаз, затем собрать всю порцию мочи в чистую емкость, не прерывая мочеиспускания. Мочу отлить в стерильный пластиковый контейнер с завинчивающейся крышкой приблизительно 50 мл. Во время сбора мочи желательно не касаться контейнером тела. Доставить контейнер с мочой в медицинский офис необходимо как можно скорее с момента взятия биоматериала.

Интерпретация результатов
Интерпретация результатов осуществляется с учетом возраста, особенностей питания, клинического состояния и других лабораторных данных.
Единицы измерения - мкмоль/л.

1. 1-метилгистидин (1-Methylhistidine)

  • <= 1 года: 17–419
  • > 1 года до < 3 лет: 18–1629
  • >= 3 лет до <= 6 лет: 10–1476
  • > 6 лет до <= 8 лет: 19–1435
  • > 8 лет до < 18 лет: 12–1549
  • >= 18 лет: 23–1339
2. 3-метилгистидин (3-Methylhistidine)
  • <= 1 года: 88–350
  • > 1 года до < 3 лет: 86–330
  • >= 3 лет до <= 6 лет: 56–316
  • > 6 лет до <= 8 лет: 77–260
  • > 8 лет до < 18 лет: 47–262
  • >= 18 лет: 70–246
3. a-аминоадипиновая кислота (AAA)
  • <= 30 дней: 0–299,7
  • > 30 дней до < 2 лет: 0–403,1
  • >= 2 лет до <= 11 лет: 0–211,1
  • > 11 лет до <= 17 лет: 0–167
  • > 17 лет: 0–146,7
4. a-аминомасляная кислота (Alpha-amino-n-butyric Acid)
  • <= 1 года: 0–63
  • > 1 года до < 3 лет: 0–56
  • >= 3 лет до <= 6 лет: 0–38
  • > 6 лет до <= 8 лет: 0–30
  • > 8 лет до < 18 лет: 0–31
  • >= 18 лет: 0–19
5. b-аланин (Beta-Alanine)
  • <= 1 года: 0–219
  • > 1 года до < 3 лет: 0–92
  • >= 3 лет до <= 6 лет: 0–25
  • > 6 лет до <= 8 лет: 0–25
  • > 8 лет до < 18 лет: 0–49
  • >= 18 лет: 0–52
6. b-аминоизомасляная кислота (Beta-aminoisobutyric Acid)
  • <= 1 года: 18–3137
  • > 1 года до < 3 лет: 0–980
  • >= 3 лет до <= 6 лет: 15–1039
  • > 6 лет до <= 8 лет: 24–511
  • > 8 лет до < 18 лет: 11–286
  • >= 18 лет: 0–301
7. y-аминомасляная кислота (Gamma Amino-n-butyric Acid)
  • <= 1 года: 0–25
  • > 1 года до < 3 лет: 0–13
  • >= 3 лет до <= 6 лет: 0–11
  • > 6 лет до <= 8 лет: 0–6
  • > 8 лет до < 18 лет: 0–5
  • >= 18 лет: 0–5
8. Аланин (Alanine)
  • <= 1 года: 93–3007
  • > 1 года до < 3 лет: 101–1500
  • >= 3 лет до <= 6 лет: 64–1299
  • > 6 лет до <= 8 лет: 44–814
  • > 8 лет до < 18 лет: 51–696
  • >= 18 лет: 56–518
9. Аргинин (Arginine)
  • <= 1 года: 10–560
  • > 1 года до < 3 лет: 20–395
  • >= 3 лет до <= 6 лет: 14–240
  • > 6 лет до <= 8 лет: 0–134
  • > 8 лет до < 18 лет: 0–153
  • >= 18 лет: 0–114
10. Аспарагин (ASN)
  • <= 30 дней: 0–2100,3
  • > 30 дней до < 2 лет: 0–1328,9
  • >= 2 лет до <= 11 лет: 0–687,8
  • > 11 лет до <= 17 лет: 0–913,9
  • > 17 лет: 0–454,2
11. Аспарагиновая кислота (Aspartic Acid)
  • <= 1 года: 0–64
  • > 1 года до < 3 лет: 0–56
  • >= 3 лет до <= 6 лет: 0–30
  • > 6 лет до <= 8 лет: 0–9
  • > 8 лет до < 18 лет: 0–11
  • >= 18 лет: 0–10
12. Валин (Valine)
  • <= 1 года: 11–211
  • > 1 года до < 3 лет: 11–211
  • >= 3 лет до <= 6 лет: 0–139
  • > 6 лет до <= 8 лет: 16–91
  • > 8 лет до < 18 лет: 0–75
  • >= 18 лет: 11–61
13. Гидроксипролин (Hydroxyproline)
  • <= 1 года: 0–2536
  • > 1 года до < 3 лет: 0–89
  • >= 3 лет до <= 6 лет: 0–46
  • > 6 лет до <= 8 лет: 0–19
  • > 8 лет до < 18 лет: 0–22
  • >= 18 лет: 0–15
14. Гистидин (Histidine)
  • <= 1 года: 145–3833
  • > 1 года до < 3 лет: 427–3398
  • >= 3 лет до <= 6 лет: 230–2635
  • > 6 лет до <= 8 лет: 268–2147
  • > 8 лет до < 18 лет: 134–1983
  • >= 18 лет: 81–1128
15. Глицин (Glycine)
  • <= 1 года: 362–18614
  • > 1 года до < 3 лет: 627–6914
  • >= 3 лет до <= 6 лет: 412–5705
  • > 6 лет до <= 8 лет: 449–4492
  • > 8 лет до < 18 лет: 316–4249
  • >= 18 лет: 229–2989
16. Глутамин (GLN)
  • <= 30 дней: 0–2279,4
  • > 30 дней до < 2 лет: 0–4544,3
  • >= 2 лет до <= 11 лет: 0–1920,6
  • > 11 лет до <= 17 лет: 0–822
  • > 17 лет: 0–1756,2
17. Глутаминовая кислота (Glutamic Acid)
  • <= 1 года: 0–243
  • > 1 года до < 3 лет: 12–128
  • >= 3 лет до <= 6 лет: 0–76
  • > 6 лет до <= 8 лет: 0–39
  • > 8 лет до < 18 лет: 0–62
  • >= 18 лет: 0–34
18. Изолейцин (Isoleucine)
  • <= 1 года: 0–86
  • > 1 года до < 3 лет: 0–78
  • >= 3 лет до <= 6 лет: 0–62
  • > 6 лет до <= 8 лет: 0–34
  • > 8 лет до < 18 лет: 0–28
  • >= 18 лет: 0–22
19. Лейцин (Leucine)
  • <= 1 года: 0–200
  • > 1 года до < 3 лет: 15–167
  • >= 3 лет до <= 6 лет: 12–100
  • > 6 лет до <= 8 лет: 13–73
  • > 8 лет до < 18 лет: 0–62
  • >= 18 лет: 0–51
20. Лизин (Lysine)
  • <= 1 года: 19–1988
  • > 1 года до < 3 лет: 25–743
  • >= 3 лет до <= 6 лет: 14–307
  • > 6 лет до <= 8 лет: 17–276
  • > 8 лет до < 18 лет: 10–240
  • >= 18 лет: 15–271
21. Метионин (Methionine)
  • <= 1 года: 0–41
  • > 1 года до < 3 лет: 0–41
  • >= 3 лет до <= 6 лет: 0–25
  • > 6 лет до <= 8 лет: 0–23
  • > 8 лет до < 18 лет: 0–20
  • >= 18 лет: 0–16
22. Орнитин (Ornithine)
  • <= 1 года: 0–265
  • > 1 года до < 3 лет: 0–70
  • >= 3 лет до <= 6 лет: 0–44
  • > 6 лет до <= 8 лет: 0–17
  • > 8 лет до < 18 лет: 0–18
  • >= 18 лет: 0–25
23. Пролин (Proline)
  • <= 1 года: 28–2029
  • > 1 года до < 3 лет: 0–119
  • >= 3 лет до <= 6 лет: 0–78
  • > 6 лет до <= 8 лет: 0–20
  • > 8 лет до < 18 лет: 0–28
  • >= 18 лет: 0–26
24. Серин (Serine)
  • <= 1 года: 18–4483
  • > 1 года до < 3 лет: 284–1959
  • >= 3 лет до <= 6 лет: 179–1285
  • > 6 лет до <= 8 лет: 153–765
  • > 8 лет до < 18 лет: 105–846
  • >= 18 лет: 97–540
25. Таурин (Taurine)
  • <= 1 года: 37–8300
  • > 1 года до < 3 лет: 64–3255
  • >= 3 лет до <= 6 лет: 76–3519
  • > 6 лет до <= 8 лет: 50–2051
  • > 8 лет до < 18 лет: 57–2235
  • >= 18 лет: 24–1531
26. Тирозин (Tyrosine)
  • <= 1 года: 39–685
  • > 1 года до < 3 лет: 38–479
  • >= 3 лет до <= 6 лет: 23–254
  • > 6 лет до <= 8 лет: 22–245
  • > 8 лет до < 18 лет: 12–208
  • >= 18 лет: 15–115
27. Треонин (Threonine)
  • <= 1 года: 25–1217
  • > 1 года до < 3 лет: 55–763
  • >= 3 лет до <= 6 лет: 30–554
  • > 6 лет до <= 8 лет: 25–456
  • > 8 лет до < 18 лет: 37–418
  • >= 18 лет: 31–278
28. Триптофан (Tryptophan)
  • <= 1 года: 14–315
  • > 1 года до < 3 лет: 14–315
  • >= 3 лет до <= 6 лет: 10–303
  • > 6 лет до <= 8 лет: 10–303
  • > 8 лет до < 18 лет: 15–229
  • >= 18 лет: 18–114
29. Фенилаланин (Phenylalanine)
  • <= 1 года: 14–280
  • > 1 года до < 3 лет: 34–254
  • >= 3 лет до <= 6 лет: 20–150
  • > 6 лет до <= 8 лет: 21–106
  • > 8 лет до < 18 лет: 11–111
  • >= 18 лет: 13–70
30. Цистатионин (Cystathionine)
  • <= 1 года: 0–302
  • > 1 года до < 3 лет: 0–56
  • >= 3 лет до <= 6 лет: 0–26
  • > 6 лет до <= 8 лет: 0–18
  • > 8 лет до < 18 лет: 0–44
  • >= 18 лет: 0–30
31. Цистин (Cystine)
  • <= 1 года: 12–504
  • > 1 года до < 3 лет: 11–133
  • >= 3 лет до <= 6 лет: 0–130
  • > 6 лет до <= 8 лет: 0–56
  • > 8 лет до < 18 лет: 0–104
  • >= 18 лет: 10–98
32. Цитруллин (Citrulline)
  • <= 1 года: 0–72
  • > 1 года до < 3 лет: 0–57
  • >= 3 лет до <= 6 лет: 0–14
  • > 6 лет до <= 8 лет: 0–9
  • > 8 лет до < 18 лет: 0–14
  • >= 18 лет: 0–12
Увеличение общего уровня аминокислот в крови возможно при:
  • эклампсии;
  • нарушении толерантности к фруктозе;
  • диабетическом кетоацидозе;
  • почечной недостаточности;
  • синдроме Рейе.
Снижение общего уровня аминокислот в крови может возникнуть при:
  • гиперфункции коры надпочечников;
  • лихорадке;
  • болезни Хартнупа;
  • хорее Хантингтона;
  • неадекватном питании, голодании (квашиоркоре);
  • синдроме мальабсорбции при тяжелых заболеваниях желудочно-кишечного тракта;
  • гиповитаминозе;
  • нефротическом синдроме;
  • лихорадке паппатачи (москитной, флеботомной);
  • ревматоидном артрите.
Первичные аминоацидопатии:
  • повышение аргинина, глутамина - дефицит аргиназы;
  • повышение аргининсукцината, глутамина - дефицит аргиносукциназы;
  • повышение цитруллина, глутамина - цитруллинемия;
  • повышение цистина, орнитина, лизина - цистинурия;
  • повышение валина, лейцина, изолейцина - болезнь кленового сиропа (лейциноз);
  • повышение фенилаланина - фенилкетонурия;
  • повышение тирозина - тирозинемия.
Вторичные аминоацидопатии:
  • повышение глутамина - гипераммониемия;
  • повышение аланина - лактацидоз (молочнокислый ацидоз);
  • повышение глицина - органические ацидурии;
  • повышение тирозина - транзиторная тирозинемия у новорождённых.

> Определение содержания аминокислот в крови и в моче

Данная информация не может использоваться при самолечении!
Обязательно необходима консультация со специалистом!

Для чего определяют содержание аминокислот в моче и в крови?

Аминокислоты – это «кирпичики», из которых состоят все белки человеческого организма. Всего выделяю 20 различных аминокислот. Одни из них (12 заменимых) синтезируются в организме человека, а другие (8 незаменимых аминокислот) поступают в организм исключительно с пищей. Помимо синтеза белка некоторые аминокислоты являются предшественниками гормонов щитовидной железы, надпочечников.

Нарушения в синтезе и метаболизме аминокислот способны вызвать серьезную патологию. Все связанные с этими нарушениями болезни называют аминоацидопатиями. Самая известная из них – фенилкетонурия, при которой нарушен обмен фенилаланина и тирозина.

Кто назначает анализ на аминокислоты?

Так как большинство аминоацидопатий являются врожденной патологией, то назначить анализ может врач-педиатр. Взрослым эти анализы назначают эндокринологи, врачи общей практики. Сдать кровь и мочу на аминокислоты можно в биохимической лаборатории.

Как правильно подготовиться?

Для сдачи крови требуется только воздержание от еды: взрослым рекомендуется сдавать кровь через 6–8 часов после последнего приема пищи, детям – через 4 часа. Перед сдачей мочи на аминокислоты следует провести тщательную обработку наружных половых органов. Их моют антисептиком и высушивают. Маленьким детям мочу собирают с помощью специального мочеприемника.

Показания для исследования уровня аминокислот в крови и в моче

Эти анализы назначают для диагностики метаболических нарушений, связанных с аминокислотами. Врач может назначить определение содержания какой-либо одной или нескольких аминокислот. Комплексное определение концентрации всех аминокислот в моче и в крови назначают для оценки общего состояния пациента, а также для дифференциальной диагностики первичных и вторичных аминоацидопатий. Вторичными называются те аминоацидопатии, при которых изменение концентрации аминокислот в крови и в моче связано с нарушением функции почек.

Интерпретация результатов

Изучением результатов этих анализов должен заниматься врач-специалист. Известно более 70 различных заболеваний, при которых повышается содержания аминокислот в плазме и в моче.

Для фенилкетонурии характерно увеличение содержания фенилаланина. Проявляется эта патология, если не предпринимать профилактических мер, задержкой умственного развития. Содержание изолейцина, лейцина, валина и метионина увеличивается при болезни «кленового сиропа», проявляющейся уже в детском возрасте приступами судорог, нарушением дыхания. Болезнь названа так вследствие того, что моча у больного имеет типичный запах кленового сиропа.

При болезни Хартнупа в крови и моче повышается количество триптофана и еще нескольких аминокислот. Проявляется эта болезнь сыпью на коже, нарушением психики вплоть до галлюцинаций.

Клиническое значение анализа крови и мочи на аминокислоты

С помощью этих анализов можно на ранней стадии выявить аминоацидопатию и принять меры по предупреждению прогрессирования этой патологии. Например, при фенилкетонурии достаточно соблюдать определенную диету, чтобы ребенок развивался нормально, и у него отсутствовали малейшие расстройства интеллекта.

Принципиальное отличие между анализом крови и мочи на аминокислоты состоит в том, что исследование мочи используют как скрининговое. И ребенок при этом не подвергается стрессовому воздействию, связанному с забором крови. А уже при выявлении аминоацидурии (наличия аминокислот в моче) проводят тщательное исследование крови.

Исследование на фенилкетонурию является обязательным для всех новорожденных и входит в программу неонатального скрининга. Организация этого скрининга на государственном уровне позволила снизить частоту развития тяжелых форм этой патологии практически до нуля.

Индекс: N10.11

Биоматериал: Кровь c ЭДТА

Составляющие комплекса: Аминокислоты (32 показателя): Аланин (ALA), Аргинин (ARG), Аспарагиновая кислота (ASP), Цитруллин (CIT), Глутаминовая кислота (GLU), Глицин (GLY), Метионин (MET), Орнитин (ORN), Фенилаланин (PHE), Тирозин (TYR), Валин (VAL), Лейцин (LEU), Изолейцин (ILEU), Гидроксипролин (HPRO), Серин (SER), Аспарагин (ASN), a-аминоадипиновая к-та (AAA), Глутамин (GLN), b-аланин (BALA), Таурин (TAU), Гистидин (HIS), Треонин (THRE), 1-метилгистидин (1MHIS), 3-метилгистидин (3MHIS), y-аминомасляная к-та (GABA), b-аминоизомасляная к-та (BAIBA), a-аминомасляная к-та (AABA), Пролин (PRO), Цистатионин (CYST), Лизин (LYS), Цистин (CYS), Цистеиновая кислота (CYSA) - в крови.

Аминокислоты – это органические вещества, содержащие карбоксильные и аминные группы. В организме человека они подразделяются на заменимые и незаменимые. Незаменимые аминокислоты - триптофан, валин, треонин, аргинин, гистидин, изолейцин, лизин, лейцин, метионин, фенилаланин. Заменимые - пролин, глицин, аланин, аспартат, глутамат, аспарагин, глутамин, тирозин, серин, цистеин. Протеиногенные и нестандартные аминокислоты, это такие аминокислоты, метаболиты которых принимают участие в различных обменных процессах в организме. Патология ферментов на любом этапе трансформации веществ может приводить к накоплению аминокислот и их продуктов превращения, тем самым оказывать негативное влияние на гомеостаз.

Когда нарушается метаболизм аминокислот, это может быть как первичное проявляение (врожденное) так и вторичное (приобретенное). Клинические проявления этих патологических состояний являются разнообразными, но ранняя диагностика и вовремя назначенное лечение позволяют предотвратить развитие и прогрессирование симптомов заболевания.

Это исследование помогает в комплексной оценке концентрации стандартных и непротеиногенных аминокислот и их производных в крови, а также помогает определить состояние аминокислотного обмена в организме человека.

Использовать результаты данного исследования могут для различных целей, чаще всего при диагностике наследственных и приобретенных заболеваний, которые связанны с процессом нарушением метаболизма аминокислот, дифференциальной диагностике причин нарушений азотистого обмена, проведении мониторинга диетотерапии и контроля эффективности лечения, оценке пищевого статуса и изменении в питании.

К повышению общего количества аминокислот в организме может приводить: эклампсия, нарушение толерантности к фруктозе, диабетический кетоацидоз, почечная недостаточность, синдром Рейе.

К снижению общей концентрации аминокислот относятся такие причины как: гиперфункция коры надпочечников, длительная лихорадка, болезнь Хартнупа, хорея Хантингтона, неадекватное питание, а именно голодание, синдром мальабсорбции при тяжелых заболеваниях желудочно-кишечного тракта, гиповитаминоз, нефротический синдром и ревматоидный артрит

Клинические проявления при первичных аминоацидопатиях различаются в зависимости пораженной аминокислоты.

Повышение аргинина, глутамина, проявляется дефицитом аргиназы. Увеличение аргининсукцината, глутамина – дефицит аргиносукциназы.

А также увеличение цитруллина, глутамина (цитруллинемия),цистина, изолейцина (болезнь кленового сиропа), валина, лизина (цистинурия), орнитина, лейцина, другими словами – лейциноз).

Увеличение концентации фенилаланина приводит к фенилкетонурии, а повышение тирозина – тирозинемия .

Вторичные аминоацидопатии характеризуются следующими проявлениями:

Повышение глутамина – гипераммониемия. Увеличение концентрации аминокислоты аланин– лактацидоз либо, как его еще называют, молочнокислый ацидоз.

Нарушение концентрации глицина приводит к органическим ацидуриям , также патологически высокий уровень тирозина является следствием транзиторной тирозинемии у новорожденных детей.

  • Оптимальное время для процедуры взятия крови – с 8:00 до 11:00.
  • За сутки до исследования придерживаться сложившегося повседневного рациона питания. Не рекомендуется излишнее потребление продуктов одного типа: только мясо, только овощи и.т.д.
  • За 24 часа до взятия крови исключить:
  • - физические и эмоциональные перегрузки; авиаперелеты; температурные воздействия (посещение бань и саун, переохлаждение и т. д.); нарушение режима «сон-бодрствование»;
  • - употребление алкоголя;
  • - прием БАД;
  • - инструментальные медицинские обследования (УЗИ, рентген и др.) или процедуры (физиотерапия, массаж и др.).
  • Не менее, чем за 12 часов (но не более 14 часов) до взятия крови отказаться от приема пищи и напитков, за исключением питьевой воды. Последний перед взятием крови прием пищи – легкий.
  • За 1 час до взятия крови не курить.
  • Перед взятием крови необходимо пребывание в состоянии покоя не менее 20 минут.
  • При подготовке к взятию крови на фоне медикаментозной терапии прием или отмену лекарственных препаратов следует согласовывать с лечащим врачом.