Домой / Киста почки / 101 элемент периодической системы. Периодическая система химических элементов Д.И.Менделеева

101 элемент периодической системы. Периодическая система химических элементов Д.И.Менделеева

Если таблица Менделеева кажется вам сложной для понимания, вы не одиноки! Хотя бывает непросто понять ее принципы, умение работать с ней поможет при изучении естественных наук. Для начала изучите структуру таблицы и то, какую информацию можно узнать из нее о каждом химическом элементе. Затем можно приступить к изучению свойств каждого элемента. И наконец, с помощью таблицы Менделеева можно определить число нейтронов в атоме того или иного химического элемента.

Шаги

Часть 1

Структура таблицы

    Таблица Менделеева, или периодическая система химических элементов, начинается в левом верхнем углу и заканчивается в конце последней строки таблицы (в нижнем правом углу). Элементы в таблице расположены слева направо в порядке возрастания их атомного номера. Атомный номер показывает, сколько протонов содержится в одном атоме. Кроме того, с увеличением атомного номера возрастает и атомная масса. Таким образом, по расположению того или иного элемента в таблице Менделеева можно определить его атомную массу.

    Как видно, каждый следующий элемент содержит на один протон больше, чем предшествующий ему элемент. Это очевидно, если посмотреть на атомные номера. Атомные номера возрастают на один при движении слева направо. Поскольку элементы расположены по группам, некоторые ячейки таблицы остаются пустыми.

    • Например, первая строка таблицы содержит водород, который имеет атомный номер 1, и гелий с атомным номером 2. Однако они расположены на противоположных краях, так как принадлежат к разным группам.
  1. Узнайте о группах, которые включают в себя элементы со схожими физическими и химическими свойствами. Элементы каждой группы располагаются в соответствующей вертикальной колонке. Как правило, они обозначаются одним цветом, что помогает определить элементы со схожими физическими и химическими свойствами и предсказать их поведение. Все элементы той или иной группы имеют одинаковое число электронов на внешней оболочке.

    • Водород можно отнести как к группе щелочных металлов, так и к группе галогенов. В некоторых таблицах его указывают в обеих группах.
    • В большинстве случаев группы пронумерованы от 1 до 18, и номера ставятся вверху или внизу таблицы. Номера могут быть указаны римскими (например, IA) или арабскими (например,1A или 1) цифрами.
    • При движении вдоль колонки сверху вниз говорят, что вы «просматриваете группу».
  2. Узнайте, почему в таблице присутствуют пустые ячейки. Элементы упорядочены не только в соответствии с их атомным номером, но и по группам (элементы одной группы обладают схожими физическими и химическими свойствами). Благодаря этому можно легче понять, как ведет себя тот или иной элемент. Однако с ростом атомного номера не всегда находятся элементы, которые попадают в соответствующую группу, поэтому в таблице встречаются пустые ячейки.

    • Например, первые 3 строки имеют пустые ячейки, поскольку переходные металлы встречаются лишь с атомного номера 21.
    • Элементы с атомными номерами с 57 по 102 относятся к редкоземельным элементам, и обычно их выносят в отдельную подгруппу в нижнем правом углу таблицы.
  3. Каждая строка таблицы представляет собой период. Все элементы одного периода имеют одинаковое число атомных орбиталей, на которых расположены электроны в атомах. Количество орбиталей соответствует номеру периода. Таблица содержит 7 строк, то есть 7 периодов.

    • Например, атомы элементов первого периода имеют одну орбиталь, а атомы элементов седьмого периода - 7 орбиталей.
    • Как правило, периоды обозначаются цифрами от 1 до 7 слева таблицы.
    • При движении вдоль строки слева направо говорят, что вы «просматриваете период».
  4. Научитесь различать металлы, металлоиды и неметаллы. Вы лучше будете понимать свойства того или иного элемента, если сможете определить, к какому типу он относится. Для удобства в большинстве таблиц металлы, металлоиды и неметаллы обозначаются разными цветами. Металлы находятся в левой, а неметаллы - в правой части таблицы. Металлоиды расположены между ними.

    Часть 2

    Обозначения элементов
    1. Каждый элемент обозначается одной или двумя латинскими буквами. Как правило, символ элемента приведен крупными буквами в центре соответствующей ячейки. Символ представляет собой сокращенное название элемента, которое совпадает в большинстве языков. При проведении экспериментов и работе с химическими уравнениями обычно используются символы элементов, поэтому полезно помнить их.

      • Обычно символы элементов являются сокращением их латинского названия, хотя для некоторых, особенно недавно открытых элементов, они получены из общепринятого названия. К примеру, гелий обозначается символом He, что близко к общепринятому названию в большинстве языков. В то же время железо обозначается как Fe, что является сокращением его латинского названия.
    2. Обратите внимание на полное название элемента, если оно приведено в таблице. Это «имя» элемента используется в обычных текстах. Например, «гелий» и «углерод» являются названиями элементов. Обычно, хотя и не всегда, полные названия элементов указываются под их химическим символом.

      • Иногда в таблице не указываются названия элементов и приводятся лишь их химические символы.
    3. Найдите атомный номер. Обычно атомный номер элемента расположен вверху соответствующей ячейки, посередине или в углу. Он может также находиться под символом или названием элемента. Элементы имеют атомные номера от 1 до 118.

      • Атомный номер всегда является целым числом.
    4. Помните о том, что атомный номер соответствует числу протонов в атоме. Все атомы того или иного элемента содержат одинаковое количество протонов. В отличие от электронов, количество протонов в атомах элемента остается постоянным. В противном случае получился бы другой химический элемент!

Засекреченные разделы таблицы Менделеева June 15th, 2018

Многие слышали о Дмитрии Ивановиче Менделееве и об открытом им в 19-м веке (1869г.) “Периодическом законе изменения свойств химических элементов по группам и рядам” (авторское название таблицы — “Периодическая система элементов по группам и рядам”).

Открытие таблицы периодических химических элементов стало одной из важных вех в истории развития химии как науки. Первооткрывателем таблицы стал российский ученый Дмитрий Менделеев. Неординарный ученый с широчайшим научным кругозором сумел объединить все представления о природе химических элементов в единую стройную концепцию.

История открытия таблицы

К середине XIX века было открыто 63 химических элемента, и ученые всего мира не раз предпринимали попытки объединить все существовавшие элементы в единую концепцию. Элементы предлагали разместить в порядке возрастания атомной массы и разбить на группы по сходству химических свойств.

В 1863 году свою теорию предложил химик и музыкант Джон Александр Ньюленд, который предложил схему размещения химических элементов, схожую с той, что открыл Менделеев, но работа ученого не была принята всерьез научным сообществом из-за того, что автор увлекся поисками гармонии и связью музыки с химией.

В 1869 году Менделеев опубликовал свою схему периодической таблицы в журнале Русского химического общества и разослал извещение об открытии ведущим ученым мира. В дальнейшем химик не раз дорабатывал и улучшал схему, пока она не приобрела привычный вид.

Суть открытия Менделеева в том, что с ростом атомной массы химические свойства элементов меняются не монотонно, а периодически. После определенного количества разных по свойствам элементов, свойства начинают повторяться. Так, калий похож на натрий, фтор - на хлор, а золото схоже с серебром и медью.

В 1871 году Менделеев окончательно объединил идеи в периодический закон. Ученые предсказал открытие нескольких новых химических элементов и описал их химические свойства. В дальнейшем расчеты химика полностью подтвердились - галлий, скандий и германий полностью соответствовали тем свойствам, которые им приписал Менделеев.

Но не всё так просто и кое-что мы не знаем.

Мало тех, кто знает, что Д. И. Менделеев был одним из первых всемирно известных русских учёных конца 19-го века, кто отстаивал в мировой науке идею эфира как всемирной субстанциональной сущности, кто придавал ей фундаментальное научное и прикладное значение в раскрытии тайн Бытия и для улучшения народнохозяйственной жизни людей.

Бытует мнение что официально преподаваемая в школах и ВУЗах таблица химических элементов Менделеева- фальсификат. Сам Менделеев в работе под названием "Попытка химического понимания мирового эфира" привёл несколько иную таблицу.

Последний раз в неискажённом виде настоящая Таблица Менделеева увидела свет в 1906 году в Санкт-Петербурге (учебник “Основы химии”, VIII издание).

Отличия видны: нулевая группа перенесена в 8-ю, а элемент легче водорода, с которой должна начинаться таблица и который условно назван Ньютонием (эфир),- вообще исключён.

Эта же таблица увековечена "КРОВАВЫМ ТИРАНОМ" тов. Сталиным в Санкт-Петербурге, Московский просп. 19. ВНИИМ им. Д. И. Менделеева (Всероссийский научно-исследовательский институт метрологии)

Памятник-таблица Периодическая система химических элементов Д. И. Менделеева выполнен мозаикой под руководством профессора Академии художеств В. А. Фролова (архитектурное оформление Кричевского) . В основу памятника положена таблица из последнего прижизненного 8-го издания (1906 г.) Основ химии Д. И. Менделеева. Элементы, открытые при жизни Д. И. Менделеева обозначены красным цветом. Элементы, открытые с 1907 по 1934 гг. , обозначены синим цветом.

Почему и как случилось, что нам столь нагло и открыто лгут?

Место и роль мирового эфира в истинной таблице Д. И. Менделеева

Многие слышали о Дмитрии Ивановиче Менделееве и об открытом им в 19-м веке (1869 г.) “Периодическом законе изменения свойств химических элементов по группам и рядам” (авторское название таблицы — “Периодическая система элементов по группам и рядам”).

Многие слышали также, что Д.И. Менделеев был организатором и безсменным руководителем (1869—1905 гг.) российского общественного научного объединения под названием “Русское Химическое Общество” (с 1872 года — “Русское Физико-Химическое Общество”), издававшее во всё время своего существования всемирно известный журнал ЖРФХО, вплоть до момента ликвидации Академией Наук СССР в 1930 году — и Общества, и его журнала.
Но мало тех, кто знает, что Д. И. Менделеев был одним из последних всемирно известных русских учёных конца 19-го века, кто отстаивал в мировой науке идею эфира как всемирной субстанциональной сущности, кто придавал ей фундаментальное научное и прикладное значение в раскрытии тайн Бытия и для улучшения народнохозяйственной жизни людей.

Ещё меньше тех, кто знает, что после скоропостижной (!!?) смерти Д. И. Менделеева (27.01.1907), признанного тогда выдающимся учёным всеми научными сообществами во всём мире кроме одной только Петербургской Академии Наук, его главное открытие — “Периодический закон” — было умышленно и повсеместно фальсифицировано мировой академической наукой.

И уж совсем мало тех, кто знает, что всё выше перечисленное связано воедино нитью жертвенного служения лучших представителей и носителей бессмертной Русской Физической Мысли благу народов, общественной пользе, вопреки нараставшей волне безответственности в высших слоях общества того времени.

В сущности, всестороннему развитию последнего тезиса и посвящена настоящая диссертация, ибо в подлинной науке любое пренебрежение существенными факторами всегда приводит к ложным результатам.

Элементы нулевой группы начинают каждый ряд других элементов, располагаясь в левой части Таблицы, “...что составляет строго логическое следствие понимания периодического закона” — Менделеев.

Особо важное и даже исключительное по смыслу периодического закона место принадлежит элементу “х”,— “Ньютонию”, — мировому эфиру. И располагаться этот особый элемент должен в самом начале всей Таблицы, в так называемой “нулевой группе нулевого ряда”. Более того, — являясь системообразующим элементом (точнее — системообразующей сущностью) всех элементов Таблицы Менделеева, мировой эфир — это субстанциональный аргумент всего многообразия элементов Таблицы Менделеева. Сама же Таблица, в этой связи, выступает в роли закрытого функционала этого самого аргумента.

Источники:

Открытие Дмитрием Менделеевым периодической таблицы химических элементов в марте 1869 года стало настоящим прорывом в химии. Российскому ученому удалось систематизировать знания о химических элементах и представить их в виде таблицы, которую и сейчас обязательно изучают школьники на уроках химии. Периодическая таблица стала фундаментом для бурного развития этой сложной и интересной науки, а история ее открытия окутана легендами и мифами. Для всех увлекающихся наукой будет интересно узнать правду о том, как Менделеев открыл таблицу периодических элементов.

История таблицы Менделеева: как все начиналось

Попытки классифицировать и систематизировать известные химические элементы предпринимались задолго до Дмитрия Менделеева. Свои системы элементов предлагали такие известные ученые, как Деберейнер, Ньюлендс, Мейер и другие. Однако из-за нехватки данных о химических элементах и их правильных атомных массах предложенные системы были не совсем достоверными.

История открытия таблицы Менделеева начинается в 1869 году, когда российский ученый на заседании Русского химического общества рассказал своим коллегам о сделанном им открытии. В предложенной ученым таблице химические элементы располагались в зависимости от их свойств, обеспечивающихся величиной их молекулярной массы.

Интересной особенностью таблицы Менделеева было также наличие пустых клеток, которые в будущем были заполнены открытыми химическими элементами, предсказанными ученым (германий, галлий, скандий). После открытия периодической таблицы в нее много раз вносились добавления и поправки. Совместно с шотландским химиком Уильямом Рамзаем Менделеев добавил в таблицу группу инертных газов (нулевую группу).

В дальнейшем история периодической таблицы Менделеева была напрямую связана с открытиями в другой науке – физике. Работа над таблицей периодических элементов продолжается до сих пор, и современные ученые добавляют новые химические элементы по мере их открытия. Значение периодической системы Дмитрия Менделеева сложно переоценить, так как благодаря ей:

  • Систематизировались знания о свойствах уже открытых химических элементов;
  • Появилась возможность прогнозирования открытия новых химических элементов;
  • Начали развиваться такие разделы физики, как физика атома и физика ядра;

Существует множество вариантов изображения химических элементов согласно периодическому закону, однако наиболее известный и распространенный вариант – это привычная для каждого таблица Менделеева.

Мифы и факты о создании периодической таблицы

Самым распространенным заблуждением в истории открытия таблицы Менделеева является то, что ученый увидел ее во сне. На самом деле сам Дмитрий Менделеев опроверг этот миф и заявил, что размышлял над периодическим законом на протяжении многих лет. Чтобы систематизировать химические элементы он выписывал каждый из них на отдельную карточку и многократно комбинировал их между собой, расставляя в ряды в зависимости от их схожих свойств.

Миф о «вещем» сне ученого можно объяснить тем, что Менделеев работал над систематизацией химических элементов сутками напролет, прерываясь на непродолжительный сон. Однако только упорный труд и природный талант ученого дал долгожданный результат и обеспечил Дмитрию Менделееву всемирную известность.

Многих учащихся в школе, а иногда и в университете, заставляютзаучивать или хотя бы примерно ориентироваться в таблице Менделеева. Для этого человек должен не только иметь хорошую память, но и логически мыслить, связывая элементы в отдельные группы и классы. Изучение таблицы легче всего дается тем людям, которые постоянно поддерживают мозг в тонусе, проходя тренинги на BrainApps.

Периодическая система химических элементов (таблица Менделеева) — классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона, установленного русским химиком Д. И. Менделеевым в 1869 году. Её первоначальный вариант был разработан Д. И. Менделеевым в 1869—1871 годах и устанавливал зависимость свойств элементов от их атомного веса (по-современному, от атомной массы). Всего предложено несколько сотен вариантов изображения периодической системы (аналитических кривых, таблиц, геометрических фигур и т. п.). В современном варианте системы предполагается сведение элементов в двумерную таблицу, в которой каждый столбец (группа) определяет основные физико-химические свойства, а строки представляют собой периоды, в определённой мере подобные друг другу.

Периодическая система химических элементов Д.И.Менделеева

ПЕРИОДЫ РЯДЫ ГРУППЫ ЭЛЕМЕНТОВ
I II III IV V VI VII VIII
I 1 H
1,00795

4,002602
гелий

II 2 Li
6,9412
Be
9,01218
B
10,812
С
12,0108
углерод
N
14,0067
азот
O
15,9994
кислород
F
18,99840
фтор

20,179
неон

III 3 Na
22,98977
Mg
24,305
Al
26,98154
Si
28,086
кремний
P
30,97376
фосфор
S
32,06
сера
Cl
35,453
хлор

Ar 18
39,948
аргон

IV 4 K
39,0983
Ca
40,08
Sc
44,9559
Ti
47,90
титан
V
50,9415
ванадий
Cr
51,996
хром
Mn
54,9380
марганец
Fe
55,847
железо
Co
58,9332
кобальт
Ni
58,70
никель
Cu
63,546
Zn
65,38
Ga
69,72
Ge
72,59
германий
As
74,9216
мышьяк
Se
78,96
селен
Br
79,904
бром

83,80
криптон

V 5 Rb
85,4678
Sr
87,62
Y
88,9059
Zr
91,22
цирконий
Nb
92,9064
ниобий
Mo
95,94
молибден
Tc
98,9062
технеций
Ru
101,07
рутений
Rh
102,9055
родий
Pd
106,4
палладий
Ag
107,868
Cd
112,41
In
114,82
Sn
118,69
олово
Sb
121,75
сурьма
Te
127,60
теллур
I
126,9045
иод

131,30
ксенон

VI 6 Cs
132,9054
Ba
137,33
La
138,9
Hf
178,49
гафний
Ta
180,9479
тантал
W
183,85
вольфрам
Re
186,207
рений
Os
190,2
осмий
Ir
192,22
иридий
Pt
195,09
платина
Au
196,9665
Hg
200,59
Tl
204,37
таллий
Pb
207,2
свинец
Bi
208,9
висмут
Po
209
полоний
At
210
астат

222
радон

VII 7 Fr
223
Ra
226,0
Ac
227
актиний ××
Rf
261
резерфордий
Db
262
дубний
Sg
266
сиборгий
Bh
269
борий
Hs
269
хассий
Mt
268
мейтнерий
Ds
271
дармштадтий
Rg
272

Сn
285

Uut 113
284 унунтрий

Uug
289
унунквадий

Uup 115
288
унунпентий
Uuh 116
293
унунгексий
Uus 117
294
унунсептий

Uuо 118

295
унуноктий

La
138,9
лантан
Ce
140,1
церий
Pr
140,9
празеодим
Nd
144,2
неодим
Pm
145
прометий
Sm
150,4
самарий
Eu
151,9
европий
Gd
157,3
гадолиний
Tb
158,9
тербий
Dy
162,5
диспрозий
Ho
164,9
гольмий
Er
167,3
эрбий
Tm
168,9
тулий
Yb
173,0
иттербий
Lu
174,9
лютеций
Ac
227
актиний
Th
232,0
торий
Pa
231,0
протактиний
U
238,0
уран
Np
237
нептуний
Pu
244
плутоний
Am
243
америций
Cm
247
кюрий
Bk
247
берклий
Cf
251
калифорний
Es
252
эйнштейний
Fm
257
фермий
Md
258
менделевий
No
259
нобелий
Lr
262
лоуренсий

Открытие, сделанное Русским химиком Менделеевым, сыграло (безусловно) наиболее важную роль в развитии науки, а именно в развитии атомно-молекулярного учения. Это открытие позволило получить наиболее понятные, и простые в изучении, представления о простых и сложных химических соединениях. Только благодаря таблице мы имеем те понятия об элементах, которыми пользуемся в современном мире. В ХХ веке проявилась прогнозирующая роль периодической системы при оценке химических свойств, трансурановых элементов, показанная еще создателем таблицы.

Разработанная в ХIХ веке, периодическая таблица Менделеева в интересах науки химии, дала готовую систематизацию типов атомов, для развития ФИЗИКИ в ХХ веке (физика атома и ядра атома). В начале ХХ века, ученые физики, путем исследований установили, что порядковый номер, (он же атомный), есть и мера электрического заряда атомного ядра этого элемента. А номер периода (т.е. горизонтального ряда), определяет число электронных оболочек атома. Так же выяснилось, что номер вертикального ряда таблицы определяет квантовую структуру внешней оболочки элемента, (этим самым, элементы одного ряда, обязаны сходством химических свойств).

Открытие Русского ученого, ознаменовало собой, новую эру в истории мировой науки, это открытие позволило не только совершить огромный скачек в химии, но так же было бесценно для ряда других направлений науки. Таблица Менделеева дала стройную систему сведений об элементах, на основе её, появилась возможность делать научные выводы, и даже предвидеть некоторые открытия.

Таблица МенделееваОдна из особенностей периодической таблицы Менделеева, состоит в том, что группа (колонка в таблице), имеет более существенные выражения периодической тенденции, чем для периодов или блоков. В наше время, теория квантовой механики и атомной структуры объясняет групповую сущность элементов тем, что они имеют одинаковые электронные конфигурации валентных оболочек, и как следствие, элементы которые находятся в пределах одой колонки, располагают очень схожими, (одинаковыми), особенностями электронной конфигурации, со схожими химическими особенностями. Так же наблюдается явная тенденция стабильного изменения свойств по мере возрастания атомной массы. Надо заметить, что в некоторых областях периодической таблицы, (к примеру, в блоках D и F), сходства горизонтальные, более заметны, чем вертикальные.

Таблица Менделеева содержит группы, которым присваиваются порядковые номера от 1 до 18 (с лева, на право), согласно международной системе именования групп. В былое время, для идентификации групп, использовались римские цифры. В Америке существовала практика ставить после римской цифры, литер «А» при расположении группы в блоках S и P, или литер «В» - для групп находящихся в блоке D. Идентификаторы, применявшиеся в то время, это то же самое, что и последняя цифра современных указателей в наше время (на пример наименование IVB, соответствует элементам 4 группы в наше время, а IVA - это 14 группа элементов). В Европейских странах того времени, использовалась похожая система, но тут, литера «А» относилась к группам до 10, а литера «В» - после 10 включительно. Но группы 8,9,10 имели идентификатор VIII, как одна тройная группа. Эти названия групп закончили свое существование после того как в 1988 году вступила в силу, новая система нотации ИЮПАК, которой пользуются и сейчас.

Многие группы получили несистематические названия травиального характера, (к примеру - «щелочноземельные металлы», или «галогены», и другие подобные названия). Таких названий не получили группы с 3 по 14, из за того что они в меньшей степени схожи между собой и имеют меньшее соответствие вертикальным закономерностям, их обычно, называют либо по номеру, либо по названию первого элемента группы (титановая, кобальтовая и тому подобно).

Химические элементы относящиеся к одной группе таблицы Менделеева проявляют определенные тенденции по электроотрицательности, атомному радиусу и энергии ионизации. В одной группе, по направлению сверху вниз, радиус атома возрастает, по мере заполнения энергетических уровней, удаляются, от ядра, валентные электроны элемента, при этом снижается энергия ионизации и ослабевают связи в атоме, что упрощает изъятие электронов. Снижается, так же, электроотрицательность, это следствие того, что возрастает расстояние между ядром и валентными электронами. Но из этих закономерностей так же есть исключения, на пример электроотрицательность возрастает, вместо того чтобы убывать, в группе 11, в направлении сверху вниз. В таблице Менделеева есть строка, которая называется «Период».

Среди групп, есть и такие у которых более значимыми являются горизонтальные направления (в отличии от других, у которых большее значение имеют вертикальные направления), к таким группам относится блок F, в котором лантаноиды и актиноиды формируют две важные горизонтальные последовательности.

Элементы показывают определенные закономерности в отношении атомного радиуса, электроотрицательности, энергии ионизации, и в энергии сродства к электрону. Из-за того, что у каждого следующего элемента количество заряженных частиц возрастает, а электроны притягиваются к ядру, атомный радиус уменьшается в направлении слева направо, вместе с этим увеличивается энергия ионизации, при возрастании связи в атоме - возрастает сложность изъятия электрона. Металлам, расположенным в левой части таблицы, характерен меньший показатель энергии сродства к электрону, и соответственно, в правой части показатель энергии сродства к электрону, у не металлов, этот показатель больше, (не считая благородных газов).

Разные области периодической таблицы Менделеева, в зависимости от того на какой оболочке атома, находится последний электрон, и в виду значимости электронной оболочки, принято описывать как блоки.

В S-блок, входит две первые группы элементов, (щелочные и щелочноземельные металлы, водород и гелий).
В P-блок, входят шест последних групп, с 13 по 18 (согласно ИЮПАК, или по системе принятой в Америке - с IIIA до VIIIA), этот блок так же включает в себя все металлоиды.

Блок - D, группы с 3 по 12 (ИЮПАК, или с IIIB до IIB по-американски), в этот блок включены все переходные металлы.
Блок - F, обычно выносится за пределы периодической таблицы, и включает в себя лантаноиды и актиноиды.

Как всё начиналось?

Многие известные именитые химики на рубеже XIX-XX веков уже давно заметили, что физические и химические свойства многих химических элементов очень похожи друг на друга. Так например Калий, Литий и Натрий - все являются активными металлами, которые при взаимодействии с водой образают активные гидроксиды этих металлов; Хлор, Фтор, Бром в своих соединениях с водородом проявляли одинаковую валентность равную I и все эти соединения являются сильными кислотами. Из этой похожести давно напрашивался вывод, что все известные химические элементы можно объединить в группы, причём так чтобы у элементов каждой группы был определённый набор физико-химических характеристик. Однако часто такие группы были неверно составлены из разных элементов различными учёными и долгое время многими игнорировалась одна из главных характеристик элементов - это их атомная масса. Игнорировалась она потому, что была и есть разная у различных элементов, а значит её не могли использовать в качестве параметра для объединения в группы. Исключение составил лишь франзуский химик Александр Эмиль Шанкуртуа, он попытался расположить все элементы в трёхмерной модели по винтовой линии, но его работа не была признана научным сообществом, а модель получилась громоздкая и неудобная.

В отличие от многих учёных, Д.И. Менделеев взял атомную массу (в те времена ещё "Атомный вес") как ключевой параметр при классификации элементов. В своём варианте Дмитрий Иванович расположил элементы по возрастанию их атомных весов и вот тут обозначилась закономерность, что через определённые промежутки элементов их свойства периодически повторяются. Правда пришлось сделать и исключения: некоторые элементы были поменяны местами и не соответствовали возрастанию атомных масс (например, теллур и йод), но зато соответствовали свойствам элементов. Дальнейшее развитие атомно-молекулярного учения оправдало такие подвижки и показало справедливость этой расстановки. Подробнее об этом вы можете прочесть в статье "В чём открытие Менделеева"

Как мы можем видеть, расположение элементов в этом варианте совсем не такое, какое мы видим в совремнном виде. Во первых, группы и периоды поменяны местами: группы по горизонтали, периоды по вертикали, а во-вторых, самих групп в нём как-то многовато - девятнадцать, вместо принятых на сегодня восемнадцати.

Однако, спустя всего год, в 1870-м Менделеев сформировал новый вариант таблицы, который уже более узнаваем нами: подобные элементы выстроены по вертикали, образуя группы, а 6 периодов расположены по горизонтали. Особенно примечательно то, что и в первом и во втором варианте таблицы виднеются существенные достижения, коих не было у его предшественников: в таблице заботливо оставлены места под элементы которые, по мнению Менделеева, ещё предстояло открыть. Соответствующие вакантные места обозначены им знаком вопроса и вы можете видеть их на рисунке выше. В дальнейшем были действительно открыты соответствующие элементы: Галий, Германий, Скандий. Таким образом Дмитрий Иванович не только систематезировал элементы в группы и периоды, но и предсказал открытие новых, ещё не известных, элементов.

В дальнейшем, после разрешения многих актуальных загадок химии того времени - открытие новых элементов, выделение группы благородных газов совместно с участием Уильяма Рамзая, установления того факта, что Дидимий вовсе не является самостоятельным элементом, а является смесью двух других, - были опубликованы всё новые и новые варианты таблицы, подчас имеющих даже вовсе и не табличный вид. Но не будем приводить здесь их все, а приведём лишь конечный вариант, сформировавшийся ещё при жизни великого учёного.

Переход от атомных весов к заряду ядра.

К сожалению, Дмитрий Иванович не дожил до планетарной теории строения атома и не видел триумф опытов Резерфорда, хотя именно с его открытиями начинается новая эпоха в развитии периодического закона и всей периодической системы. Напомню что из опытов, проводимых Эрнестом Резерфордом, следовало, что атомы элементов состоят из положительно-заряженного атомного ядра и обращающихся вокруг ядра отрицательно-заряженных электронов. После определения зарядов атомных ядер всех, известных на тот момент, элементов, выяснилось, что в периодической системе они располагаются в соответствии с зарядом ядра. А периодический закон приобрёл новый смысл, теперь он стал звучать так:

"Свойства химических элементов, а также формы и свойства, образуемых ими простых веществ и соединений находятся в периодической зависимости от величины зарядов ядер их атомов"

Теперь стало понятно, почему некоторые более лёгкие элементы были поставлены Менделеевым позади их более тяжёлых предшественников, - всё дело в том, что так они стоят по порядку зарядов их ядра. Например, теллур тяжелее йода, однако стоит в таблице раньше него, ибо заряд ядра его атома и количество электронов равняется 52, а у йода - 53. Можете посмотреть на таблицу и убедиться в этом сами.

После открытия строения атома и атомного ядра, периодическая система претерпевала ещё несколько изменений, пока, наконец, не достигла вида, уже знакомого нам со школы, короткопериодного варианта таблицы Менделеева.

В этой таблице нам знакомо уже всё: 7 периодов, 10 рядов, побочные и главные подгруппы. Также со временем открытия новых элементов и наполнения ими таблицы, пришлось вынести в отдельные ряды элементы подобные Актинию и Лантану, все они соответственно были названы Актиноидами и Лантаноидами. Эта версия системы просуществовала очень долго - в мировом научном сообществе практически до конца 80х, начала 90х, а в нашей стране и того дольше - до 10х годов нынешнего столетия.

Современный вариант таблицы Менделеева.

Однако, тот вариант, которые многие из нас проходили в школе на деле оказывается весьма запутанным, а путаница выражается в разделении подгрупп на главные и побочные и запоминание логики отображения свойств элементов становится достаточно сложным. Конечно, несмотря на это, многие по нему учились, становились докторами химических наук, но всё же в современности ему на смену пришёл новый вариант - длиннопериодный. Отмечу, что именно этот вариант является одобренным IUPAC (международным союзом теоретической и прикладной химии). Давайте взглянем на него.

На смену восьми группам пришли восемнадцать, среди которых нет уже никакого разделения на главные и побочные, а все группы продиктованы расположением электронов в атомной оболочке. Заодно избавились и от двухрядных и однорядных периодов, теперь все периоды содержат только один ряд. Чем же удобен такой вариант? Теперь периодичность свойств элементов просматривается более наглядно. Номер группы, по сути, обозначает количество электронов во внешнем уровне, в связи с чем все главные подгруппы старого варианта расположились в первой, второй и с тринадцатой по восемнадцатую группу, а все "бывшие побочные" группы разместились в середине таблицы. Тем самым теперь из таблицы хорошо видно, что если это первая группа - то это щелочные металлы и никаких вам меди или серебра, и видно, что все транзитные металлы хорошо демонстрируют схожесть их свойств в связи с заполнением d-подуровня, в меньшей степени влияющим на внешние свойства, также как и лантаноиды и актиноиды проявляют подобные свойства по причине разного лишь f-подуровня. Таким образом, вся таблица разбита на следующие блоки: s-блок, на котором заполняются s-электроны, d-блок, p-блок и f-блок, с заполнением d, p, и f-электронов соответственно.

К сожалению, в нашей стране этот вариант включился в школьные учебники лишь в последние 2-3 года, да и то не во все. И очень напрасно. С чем это связано? Ну во-первых, с застойными временами в лихие 90-е, когда в стране не было вообще никакого развития, не говоря уж о сфере образования, а именно в 90е годы мировое химическое сообщество перешло на этот вариант. Во-вторых, с лёгкой инертностью и тяжестью восприятия всего нового, ведь нашим преподавателям привычен именно старый, короткопериодный вариант таблицы, несмотря на то, что при изучении химии он гораздо сложнее и менее удобен.

Расширенный вариант периодической системы.

Но время не стоит на месте, наука и технологии тоже. Уже открыт 118 элемент периодической системы, а значит скоро придётся открывать следующий, восьмой, период таблицы. Кроме того, появится новый энергетический подуровень: g-подуровень. Элементы его составляющие придётся вынести вниз таблицы, подобно лантаноидам или актиноидам, либо расширить эту таблицу ещё в два раза, так что она перестанет помещаться на лист формата A4. Здесь я приведу лишь ссылку на википедию (см. Расширенная периодическая система) и не буду лишний раз повторять описание этого варианта. Кому станет интересно - сможет пройти по ссылке и ознакомиться.

В этом варианте ни f-элементы (лантаноиды и актиноиды) ни g-элементы ("элементы будущего" с №№ 121-128) не вынесены отдельно, а делают таблицу шире на 32 клетки. Также элемент Гелий помещён во вторую группу, так как он входит в s-блок.

В целом, же вряд ли будущие химики будут пользоваться этим вариантом, скорее всего на смену таблице Менделеева придёт одна из альтернатив, которые уже выдвигаются смелыми учёными: система Бенфея, "Химическая галактика" Стьюарта или иной вариант. Но это будет уже только после достижения второго острова стабильности химических элементов и, скорее всего, нужно будет больше для наглядности в ядерной физике, чем в химии, ну а нам пока хватит старой доброй периодической системы Дмитрия Ивановича.