Домой / Дисбактериоз / Функции коры больших полушарии. Кора головного мозга: функции и особенности строения

Функции коры больших полушарии. Кора головного мозга: функции и особенности строения

Головной мозг располагается в мозговом отделе черепа. Его средний вес 1360 г. Выделяют три больших отдела мозга: ствол, подкорковый отдел и кару больших полушарий. Из основания мозга выходят 12 пар черепных нервов.

1 - верхний участок спинного мозга; 2 - продолговач ый мозг, 3 - мост, 4 - мозжечок; 5 - средний мозг; 6 - четверохолмие; 7 - промежуточный мозг; 8 - кора больших полушарий; 9 - мозолистое тело, соединяющее правое полушарие с новым; 10 - перекрест зрительных нервов; 11 - обонятельные луковицы.

Отделы головного мозга и их функции

Отделы мозга

Структуры отделов

Функции

СТВОЛ МОЗГА

Задний мозг

Продолговатый мозг

Здесь находятся ядра с отходящими парами черепно-мозговы> нервов:

XII - подъязычных; XI - добавочных; X - блуждающих; IX - языкоглоточных нервов

Проводниковая - связь спинного и вышележащих отделов головного мозга.

Рефлекторные:

1) регуляция деятельности дыхательной, сердечно-сосудистой и пищеварительной систем;

2) пищевые рефлексы слюноотделения, жевания, глотания;

3) защитные рефлексы: чихание, моргание, кашель, рвота;

Варолиев мост

содержит ядра: VIII - слухового; VII - лицевого; VI - отводящего; V - тройничного нервов.

Проводниковая - содержит восходящие и нисходящие нервные пути и нервные волокна, соединяющие полушария мозжечка между собой и с корой большого мозга. Рефлекторная - отвечает за вестибулярные и шейные рефлексы, регулирующие тонус мышц, в т.ч. мимических мышц.

Мозжечок

Полушария мозжечка соединены между собой и образованы серым и белым веществом.

Координация произвольных движений и сохранение положения тела в пространстве. Регуляция мышечного тонуса и равновесия.

Ретикулярная формация - сеть нервных волокон, оплетающих ствол мозга и промежуточный мозг. Обеспечивает взаимодействие восходящих и нисходящих путей мозга, координацию различных функций организма и регуляцию возбудимости всех отделов ЦНС.

Средний мозг

Четверохолмие

С ядрами первичных зрительных и слуховых центров.

Ножки мозга

С ядрами IV - глазодвигательного III - блокового нервов.

Проводниковая.

Рефлекторны:

1) ориентировочные рефлексы на зрительные и звуковые раздражители,которые проявляются в повороте головы и туловища;

2) регуляция мышечного тонуса и позы тела.

ПОДКОРКА

Передний мозг

Промежуточный мозг:

а) таламус (зрительный бугор) с ядрами ll -й пары зрительных нервов;

Сбор и оценка всей поступающей информации от органов чувств. Выделение и передача в кору мозга наиболее важной информации. Регуляция эмоционального поведения.

б) гипоталамус.

Высший подкорковый центр вегетативной нервной системы и всех жизненно важных функций организма. Обеспечение постоянства внутренней среды и обменных процессов организма. Регуляция мотивированного поведения и обеспечение защитных реакций (жажда, голод, насыщение, страх, ярость, удовольствие и неудовольствие). Участие в смене сна и бодрствования.

Базальные ганглии (подкорковые ядра)

Роль в регуляции и координации двигательной активности (вместе с таламусом и мозжечком). Участие в создании и запоминании программ целенаправленных движений,обучения и памяти.

КОРА БОЛЬШИХ ПОЛУШАРИЙ

Древняя и старая кора (обонятельный и висцеральный мозг) Содержит ядра 1-ой пары обонятельных нервов.

Древняя и старая кора вместе с некоторыми подкорковыми структурами формирует лимбическую систему, которая:

1) отвечает за врожденные поведенческие акты и формирование эмоций;

2) обеспечивает гомеостаз и контроль реакций, направленных на самосохранение и сохранение вида:

3 влияет на регуляцию вегетативных функций.

Новая кора

1) Осуществляет высшую нервную деятельность, отвечает за сложное сознательное поведение и мышление. Развитие морали, воли, интеллекта, связаны с деятельностью коры.

2) Осуществляет восприятие, оценку и обработку всей поступающей информации от органов чувств.

3) Координирует деятельность всех систем организма.

4) Обеспечивает взаимодействие организма с внешней средой.


Кора больших полушарий головного мозга

Кора больших полушарий - филогенетически наиболее молодое образование мозга. За счет борозд общая площадь поверхности коры взрослого человека 1700 2000 см2. В коре насчитывают от 12 до 18 млрд, нервных клеток, которые расположены в несколько слоев. Кора представляет собой слой серого вещества толщиной 1,5-4 мм.

На рисунке ниже показаны функциональные зоны и доли коры головного мозга

Расположение серого и белого вещества

Доли полушарий

Зоны полушарий

Кора – серое вещество, белое вещество нахо-дится под ко-рой, в белом веществе есть скопления серо-го вещества в виде ядер

Центры речи

Теменная

Кожно-мышечная зона

Контроль дви-жений, спо-собность раз-личать раздражения

Височная

Слуховая зона

Дуги рефлексов, различающих звуковые раздражения

Вкусовая и обонятельная зоны

Рефлексы различения вкусов и запахов

Затылочная

Зрительная зона

Различение зрительных раздражений

Чувствительная и двигательная зоны коры больших полушарий

Левое полушарие мозга

Правое полушарие мозга

Левое полушарие ("мыслительное”, логическое) - - отвечает за регуляцию речевой деятельности, устной речи, письма, счета и логического мышления. Доминантное у правшей.

Правое полушарие ("художественное", эмоциональное) - - участвует в распознавании зрительных, музыкальных образов, формы и структуры предметов, в сознательной ориентации в пространстве.

Поперечный срез левого полушария через чувствительные центры

Представительство тела в чувствительной зоне коры больших полушарий. Чувствительная зона каждого полушария получает информацию от мышц, кожи и внутренних органов противоположной стороны тела.

Поперечный срез правого полушария через двигательные центры

Представительство тела в двигательной зоне коры больших полушарий. Каждый участок двигательной зоны контролирует движения конкретной мышцы.

_______________

Источник информации:

Биология в таблицах и схемах./ Издание 2е, - СПб.: 2004.

Резанова Е.А. Биология человека. В таблицах и схемах./ М.: 2008.

Значение коры больших полушарий. Высшая нервная деятельность (ВНД) - это деятельность коры больших полушарий головного мозга и ближайших к ней подкорковых образований, обеспечивающая наиболее совершенное приспособление (поведение) высокоорганизованных животных и человека к окружающей среде. В работе русского физиолога И. М. Сеченова «Рефлексы головного мозга» (1863) впервые была высказана мысль о связи сознания и мышления человека с рефлекторной деятельностью головного мозга. Эта идея была экспериментально подтверждена и развита академиком И. П. Павловым, который по праву является создателем учения о высшей нервной деятельности. Ее основой являются условные рефлексы.

Безусловные и условные рефлексы. Все рефлекторные реакции организма на различные раздражители И. П. Павлов подразделил на две группы: безусловные и условные.

Безусловные рефлексы - это врожденные рефлексы, передаваемые по наследству от родителей. Они являются видовыми, относительно постоянными и осуществляются низшими отделами ЦНС - спинным мозгом, стволом н подкорковыми ядрами головного мозга. Безусловные рефлексы (например, сосательный, глотательный, зрачковый рефлексы, кашель, чихание и др.) сохраняются у животных, лишенных больших полушарий. Они образуются в ответ на действие определенных раздражителей. Так, рефлекс слюноотделения возникает при раздражении пищей вкусовых сосочков языка. Возникшее возбуждение в виде нервного импульса проводится по чувствительным нервам в продолговатый мозг, где находится центр слюноотделения, откуда оно по двигательным нервам передается слюнным железам, вызывая слюноотделение. На основе безусловных рефлексов осуществляются регуляция и согласованная деятельность разных органов и их систем, поддерживается само существование организма.

В изменчивых условиях окружающей среды сохранение жизнедеятельности организма и приспособительное поведение осуществляется благодаря образованию условных рефлексов с обязательным участием коры больших полушарий головного мозга. Они не являются врожденными, а образуются в течение жизни на базе безусловных рефлексов под воздействием определенных факторов внешней среды. Условные рефлексы строго индивидуальны, т. е. у одних особей вида тот или иной рефлекс может присутствовать, у других - отсутствовать.

Образование и биологическое значение условных рефлексов. Условные рефлексы образуются в результате сочетания безусловного рефлекса с действием условного раздражителя. Для этого необходимо соблюдение двух условий: 1) действие условного раздражителя должно обязательно несколько предшествовать действию безусловного раздражителя (для образования у собаки условного слюноотделительного рефлекса на звонок нужно, чтобы он начал звонить за 5-30 с до подачи корма и некоторое время сопровождал процесс еды); 2) условный раздражитель должен неоднократно подкрепляться действием безусловного раздражителя. Так, после нескольких сочетаний звонка с приемом пищи у собаки будет наблюдаться слюноотделение при одном звуке звонка без пищевого подкрепления.

Механизм образования условного рефлекса состоит в установлении временной связи (замыкания) между двумя очагами возбуждения в мэре головного мозга. Для рассмотренного примера такими очагами являются центры слюноотделения и слуха. Дуга условного рефлекса в отличие от таковой безусловного значительно усложнена и включает рецепторы, воспринимающие условное раздражение, чувствительный нерв, проводящий возбуждение в головной мозг, участок коры, связанный с центром безусловного рефлекса, двигательный нерв и рабочий орган.

Биологическое значение условных рефлексов в жизни человека и животных огромно, так как они обеспечивают их приспособительное поведение - позволяют точно ориентироваться в пространстве и времени, находить пищу (по виду, запаху), избегать опасности, устранять вредные для организма воздействия. С возрастом число условных рефлексов возрастает, приобретается опыт поведения, благодаря которому взрослый организм оказывается лучше приспособленным к окружающей среде, чем детский. Выработка условных рефлексов лежит в основе дрессировки животных, когда тот или иной условный рефлекс образуется в результате сочетания с безусловным (дача лакомства и др.).

Торможение условных рефлексов. При изменении условий существования в организме образуются новые условные рефлексы, а выработанные ранее ослабляются или вовсе исчезают благодаря процессу торможения. И. П. Павлов опытным путем выявил два вида торможения условных рефлексов - внешнее и внутреннее.

Внешнее торможение происходит в случае образования в коре больших полушарий мозга нового очага возбуждения под действием более сильного раздражителя, не связанного с данным условным рефлексом. Например, боль приводит к торможению пищевого условного рефлекса. Или выработанный у животных условный пищевой рефлекс на свет, не проявляется при внезапном действии шума. Чем сильнее посторонний раздражитель, тем больше его ослабляющее действие.

Внутреннее торможение условного рефлекса развивается постепенно в случае многократного подкрепления условного раздражителя безусловным. Благодаря внутреннему торможению в ЦНС происходит угасание биологически нецелесообразных для организма реакций, утративших свое значение в измененных условиях среды. Например, при пересыхании водоема, из которого животные пили воду, условный раздражитель (вид ручья) не будет подкрепляться безусловным (питье воды), условный рефлекс начнет угасать и животные перестанут ходить на водопой. Они найдут новый источник воды, и возникнет новый условный рефлекс взамен утраченного. Образование новых условных рефлексов и исчезновение старых позволяет организму менять свое поведение, всякий раз приспосабливаясь к особенностям среды обитания. Внутреннее торможение дает организму возможность сводить к минимуму биологически нецелесообразные, лишние реакции в ответ на различные раздражители, переставшие подкрепляться безусловными рефлексами.

Наиболее сложные формы приспособительного поведения свойственны человеку. Так же как у животных, они связаны с образованием условных рефлексов и их торможением. Однако у человека деятельность коры больших полушарий головного мозга обладает наиболее развитой способностью к анализу и синтезу сигналов, поступающих из окружающей и внутренней среды организма. Аналитическая деятельность коры заключается в тонком различении (дифференцировке) по характеру и интенсивности действия множества раздражений, действующих на организм и доходящих в форме нервных импульсов до мозговой коры. За счет внутреннего торможения в коре осуществляется дифференцировка раздражителей по степени их биологической значимости. Синтетическая деятельность коры проявляется в связывании, объединении возбуждений, возникающих в разных зонах коры, что формирует сложные формы поведения человека.

Первая и вторая сигнальные системы. Сигнальной системой называют совокупность процессов в нервной системе, которые осуществляют восприятие, анализ информации и ответную реакцию организма. Академик И. П. Павлов разработал учение о первой и второй сигнальных системах.

Первой сигнальной системой он назвал деятельность коры больших полушарий мозга, которая связана с восприятием через рецепторы непосредственных раздражителей (сигналов) внешней среды, например световых, тепловых, болевых и т. д. Она является основой для выработки условных рефлексов, присущих как животным, так и человеку.

В отличие от животных человеку как социальному существу свойственна еще к вторая сигнальная система, связанная с функцией речи, со словом, слышимым или видимым (письменная речь). Слово, по И. П. Павлову, является сигналом для работы первой сигнальной системы («сигналы сигналов»). Например, действия человека (его поведение) будут одинаковыми как при произнесении слова «пожар!», так и при действительно наблюдаемом (зрительное раздражение) им пожаре. Образование условного рефлекса на основе речи является качественной особенностью высшей нервной деятельности человека.

Вторая сигнальная система сформировалась у человека вследствие общественного образа жизни и коллективного труда и выступала средством общения. Слово, речь, письмо являются не только слуховым и зрительным раздражителями, они несут также определенную информацию о предмете или явлении, т. е. определенную смысловую нагрузку. В процессе обучения речи у человека возникают временные связи между нейронами коры, воспринимающими сигналы от разных предметов, явлений, событий, и центрами, воспринимающими словесное обозначение этих предметов, явлений и событий, их смысловое значение. Вот почему у человека условно образованный рефлекс на какой-либо раздражитель легко воспроизводится без подкрепления, если этот раздражитель выразить словесно. Например, на словосочетание «утюг горячий!», человек отдернет руку и не коснется его. У собаки тоже можно выработать условный рефлекс на слово, но оно будет восприниматься ею как определенное звукосочетание без понимания смысла. Так, дрессированная собака, поднимающаяся на задние лапы при слове «служи», никак не будет реагировать на одинаковый по смыслу приказ «стань вертикально».

Развитие у человека речи повысило его способность отражать явления внешней среды, накапливать и использовать опыт предыдущих поколений. В результате сформировалась свойственная только человеку форма отражения действительности, называемая сознанием. Человек с помощью слов, математических символов, образов художественных произведений может передавать другим людям знания об окружающем мире, в том числе и о самом себе. Благодаря слову (словесной сигнализации) у человека появилась возможность отвлеченно и обобщенно воспринимать явления, находящие свое выражение в понятиях, суждениях, умозаключениях. Например, слово «деревья» обобщает многочисленные породы деревьев и отвлекает от конкретных признаков дерева каждой породы.

Способность к обобщению и отвлечению служит основой мышления человека, являясь результатом функции всей коры мозга и в особенности ее лобных долей. Благодаря отвлеченному логическому мышлению человек познает окружающий мир и его законы. Способность к мышлению используется человеком в его практической деятельности, когда он ставит определенные цели, намечает пути реализации и достигает их. В ходе исторического развития человечества благодаря мышлению накоплены огромные знания о внешнем мире.

Таким образом, благодаря первой сигнальной системе достигается конкретное чувственное восприятие окружающего мира и познается состояние самого организма. С развитием у человека второй сигнальной системы достигает чрезвычайной сложности абстрактная аналитическая и синтетическая деятельность коры, проявляющаяся в способности делать широкие обобщения, создавать понятия, открывать действующие в природе законы. Поэтому поведение человека, контролируемое второй сигнальной системой, состоит из целенаправленных действий. Две сигнальные системы тесно взаимодействуют между собой, так как вторая сигнальная система возникла на базе первой и функционирует в связи с ней. У человека вторая сигнальная система преобладает над первой вследствие общественного образа жизни и развития мышления.

Сон, его значение. Сон - специфическое состояние нервной системы, проявляющееся в выключении сознания, угнетении двигательной активности, снижении обменных процессов и всех видов чувствительности. Сон рассматривают как охранительное торможение, которое охватывает кору больших полушарий и позволяет нервным центрам восстановить свою работоспособность. И действительно, каждый человек после сна чувствует, что у него улучшилось самочувствие, восстановилась работоспособность, повысилось внимание. Однако сон - это сложный физиологический процесс, а не просто покой. Регистрация электрических потенциалов мозга - электроэнцефалограмм - позволила выявить две фазы сна: медленный и быстрый сон, характеризующиеся разными частотой и амплитудой колебаний электрической активности мозга. Фазы сна циклично сменяют друг друга. Один цикл длится примерно 1,5 ч, когда медленный сон на непродолжительное время (около 20 мин) сменяется быстрым сном. За ночь у взрослого человека цикл повторяется 4-6 раз. Именно во время медленного сна замедляются и значительно снижаются обменные процессы. Быстрый сон, как правило, сопровождается повышением уровня обменных процессов, быстрыми движениями глаз, сновидениями. Стадии медленного сна отсутствуют у животных, они свойственны только человеку. Ученые связывают это с безопасностью ночлега человека, т. е. отсутствием опасности нападения.

Головной мозг

Рефлекторная функция спинного мозга

n Мотонейроны спинного мозга иннервируют все скелетные мышцы (за исключением мышц лица)

n Спинной мозг осуществляет элементарные двигательные рефлексы – сгибательные и разгибательные, ритмические (шагательные, чесательные) рефлексы, возникающие при раздражении кожи или проприорецепторов мышц и сухожилий, а также посылают постоянную импульсацию к мышцам, поддерживая тонус

n Специальные мотонейроны иннервируют дыхательную мускулатуру (межреберные мышцы и диафрагму) и обеспечивают дыхательные движения

n Вегетативные нейроны иннервируют все внутренние органы (сердце, сосуды, потовые железы, железы внутренней секреции, пищеварительный тракт, мочеполовую систему).

Проводниковая функция спинного мозга связана с:

n Передачей в вышележащие отделы нервной системы получаемого с периферии потока информации;

n С проведением импульсов из головного мозга в спинной.

Головной мозг расположен в полости черепа. Он развивается из головного отдела нервной трубки и первоначально состоит из трех мозговых пузырей, которые называются передним , средним и задним .

Из переднего мозгового пузыря развиваются полушария большого мозга, базальные ядра, гипоталамус и таламус.

Из среднего мозга - средний мозг.

Из заднего мозгового пузыря - мост, продолговатый мозг и мозжечок.

Средний мозг, мост, продолговатый мозг входит в состав ствола мозга.

Большой мозг заполняет передневерхнюю часть полости черепа, а также переднюю и среднюю черепные ямки. Он представлен двумя полушариями , состоящими из нервных клеток (серое вещество) и волокон (белое вещество). Они разделены между собой глубокой продольной щелью. В глубине этой щели находится мозолистое тело - широкая дугообразно изогнутая пластинка белого вещества, соединяющая полушария между собой и состоящая из поперечно ориентированных нервных волокон (Рис. 11).

Области большого мозга . При помощи глубоких латеральной и центральной борозд каждое полушарие делится на: лобную, височную, теменную и затылочную доли (Рис. 12).

Тонкий слой серого вещества, покрывающий каждое полушарие, называется корой.

Кора представляет собой тонкий слой (1,3-4,5 мм) серого вещества на поверхности полушарий. Поверхность коры в процессе эволюции увеличивалась за счет появления борозд и извилин. Площадь коры у взрослого человека 2200-2600 см 2 . На нижней и внутренней поверхности коры находятся старая и древняя кора (архи – и палеокортекс). Они функционально связаны с гипоталамусом, миндалиной, некоторыми ядрами среднего мозга и все вместе образуют лимбическую систему, которая играет важнейшую роль в формировании эмоций и внимания, памяти и обучения Лимбическая система участвует в регуляции пищевого и питьевого поведения, цикла бодрствование-сон, агрессивно-оборонительных реакций и в ней находятся центры удовольствия и неудовольствия, беспирчинной радости, тоски, страха.


На наружной поверхности коры расположена новая кора – неокортекс. Вся кора имеет 6-7 слоев, различающихся формой, величиной и расположением нейронов (Рис. 13). Между нервными клетками всех слоев коры в процессе их деятельности возникают постоянные и временные связи.

Рис.11. Среднесагиттальный разрез головы человека


Рис. 12. Области большого мозга

Основные типы клеток коры – пирамидные и звездчатые нейроны.

Звездчатые – воспринимают раздражения и объединяют деятельность различных пирамидных нейронов.

Пирамидные осуществляют эфферентную функцию коры и взаимодействия между различными зонами коры.


Рис. 13. Перечень слоёв коры (начиная с поверхностного): молекулярный слой (I), наружный зернистый слой (II), пирамидный слой (III), или слой средних пирамид, внутренний зернистый слой (IV), ганглионарный слой (V), или слой крупных пирамид, слой полиморфных клеток (VI).

Под корой располагается белое вещество больших полушарий, которое состоит из ассоциативных, комиссуральных и проекционных волокон. Ассоциативные волокна связывают отдельные участки одного и того же полушария, а короткие ассоциативные волокна – отдельные извилины и близкие поля. Комиссуральные волокна – связывают симметричные части обоих полушарий, большая их часть проходит через мозолистое тело. Проекционные волокна выходят за пределы полушарий, входят в состав нисходящих и восходящих путей. По которым осуществляется двусторонняя связь коры с нижележащими отделами ЦНС.

Известны случаи рождения детей без коры больших полушарий головного мозга (анэнцефалы). Они живут несколько дней (максимум 3 -4 года). Один такой ребенок почти все время спал, у него были некоторые врожденные реакции (сосание, глотание). Поэтому сделали вывод, что в процессе филогенеза происходит кортиколизация функций (все, что приобретается организмом в течение индивидуальной жизни, связано с корой больших полушарий - вся высшая нервная деятельность).

В коре есть 3 типа областей – сенсорные, моторные и ассоциативные (Рис.14).

· Сенсорные ( расположены позади центральной борозды). Каждому рецепторному аппарату в коре соответствует определенная область, которую Павлов назвал корковым ядром анализатора. Именно к корковому ядру анализатора по афферентным волокнам приходят сигналы от рецепторов органов чувств. В сенсорных зонах выделяют первичные и вторичные проекционные поля. Нейроны проекционных первичных полей выделяют отдельные признаки сигнала (например, контур, цвет, контраст). Вторичные – формируют их в целостный образ. Сенсорные зоны локализованы в определенных частях коры: зрительная – в затылочной области, слуховая – в височной, вкусовая – в нижней части теменных областей, соматосенсорная зона (анализирующая импульсацию с рецепторов мышц, суставов, сухожилий и кожи) располагается в области задней центральной извилины.

· Моторные – зоны, раздражение которых вызывает двигательную реакцию, расположены впереди центральной борозды. В моторной коре тело человека спроецировано как бы вверх ногами, то есть ближе к латеральной борозде находятся области, обеспечивают функционирование мышц головы, а у противоположного конца предцентральной извилины - мышц нижней конечности (Рис.15).

· Ассоциативные – не имеют прямых афферентных и эфферентных связей с периферией. Они связаны с моторными и сенсорными зонами. Здесь расположены центры, связанные с речевой деятельностью. Функции ассоциативных зон –

А) обработка и хранение поступающей информации

Б) переход от наглядного восприятия к абстрактным символическим процессам.

В) Мышление (внутренняя речь) возможно только при совместной деятельности различных сенсорных систем, объединение информации от которых происходит в ассоциативных полях.

Г) Целенаправленное поведение человека, формирование намерений и планов, программ произвольных движений

Д) Отвечают за согласованную работу обеих полушарий мозга. Как правило, одно из полушарий является ведущим – доминантным. У большинства если ведущая рука – правая, доминантное полушарие – левое. Левое лучше снабжается кровью, в нем больше взаимосвязей нейронов, в нем находится моторный центр речи, отвечающий за произнесение слов и сенсорный центр речи, отвечающий за понимание слов. У человека есть три формы межполушарной функциональной асимметрии, т.е. неодинакового вклада полушарий: моторная, сенсорная и психическая. Моторная и сенсорная – это когда у человека с ведущей правой рукой, главным является левый глаз или левое ухо. Причем в каждом полушарии есть центры, которые контролируют оба уха, оба глаза и т.д. Это дает возможность совмещать функции двух полушарий в одном, при повреждении. Психическая асимметрия проявляется в виде специализации полушарий. Левое больше отвечает за аналитические процессы, абстрактное мышление, логическое мышление, предвосхищение событий. Правое обрабатывает информацию целиком, не расчленяя на детали, преобладает предметное мышление, художественное, а функции связаны с прошлым, т.е. обработка информации на основе прошлого опыта.

В коре полушарий большого мозга выделяют также высшие центры осознанного поведения, морали, воли и интеллекта.

Кора больших полушарий головного мозга представляет собой наиболее молодое образование центральной нервной системы.Деятельность коры больших полушарий основана на принципе условного рефлекса, поэтому ее называют условно-рефлекторной. Она осуществляет быструю связь с внешней средой и приспособление организма к изменяющимся условиям внешней среды.

Глубокие борозды делят каждое полушарие большого мозга на лобную, височную, теменную, затылочную доли и островок . Островок расположен в глубине сильвиевой борозды и закрыт сверху частями лобной и теменной долей мозга.

Кора большого мозга делится на древнюю (архиокортекс ), старую (палеокортекс ) и новую (неокортекс). Древняя кора, наряду с другими функциями, имеет отношение к обонянию и обеспечению взаимодействия систем мозга. Старая кора включает поясную извилину, гиппокамп. У новой коры наибольшее развитие величины, дифференциации функций отмечается у человека. Толщина новой коры 3-4 мм. Общая площадь коры взрослого человека 1700-2000 см 2 , а число нейронов — 14 млрд (если их расположить в ряд, то образуется цепь протяженностью 1000 км) — постепенно истощается и к старости составляет 10 млрд (более 700 км). В составе коры имеются пирамидные, звездчатые и веретенообразные нейроны.

Пирамидные нейроны имеют разную величину, их дендриты несут большое количество шипиков: аксон пирамидного нейрона идет через белое вещество в другие зоны коры или структуры ЦНС.

Звездчатые нейроны имеют короткие, хорошо ветвящиеся дендриты и короткий аксон, обеспечивающий связи нейронов в пределах самой коры большого мозга.

Веретенообразные нейроны обеспечивают вертикальные или горизонтальные взаимосвязи нейронов разных слоев коры.

Строение коры больших полушарий

В коре содержится большое количество глиальных клеток, выполняющих опорную, обменную, секреторную, трофическую функции.

Наружная поверхность коры разделена на четыре доли: лобную, теменную, затылочную и височную. Каждая доля имеет свои проекционные и ассоциативные области.

Кора большого мозга имеет шестислойное строение (рис. 1-1):

  • молекулярный слой (1) светлый, состоит из нервных волокон и имеет небольшое количество нервных клеток;
  • наружный зернистый слой (2) состоит из звездчатых клеток, определяющих длительность циркулирования возбуждения в коре головного мозга, т.е. имеющих отношение к памяти;
  • слой пирамидных меток (3) формируется из пирамидных клеток малой величины и вместе со слоем 2 обеспечивает корко-корко- вые связи различных извилин мозга;
  • внутренний зернистый слой (4) состоит из звездчатых клеток, здесь заканчиваются специфические таламокортикальные пути, т.е. пути, начинающиеся от рецепторов-анализаторов.
  • внутренний пирамидный слой (5) состоит из гигантских пирамидных клеток, которые являются выходными нейронами, аксоны их идут в ствол мозга и спинной мозг;
  • слой полиморфных клеток (6) состоит из неоднородных по величине клеток треугольной и веретенообразной формы, которые образуют кортикоталамические пути.

I — афферентные пути из таламуса: СТА — специфические таламические афференты; НТА — неспецифические таламические афференты; ЭМВ — эфферентные моторные волокна. Цифрами обозначены слои коры; II — пирамидный нейрон и распределение окончаний на нем: А — неспецифические афферентные волокна из ретикулярной формации и ; Б — возвратные коллатерали от аксонов пирамидных нейронов; В — комиссуральные волокна из зеркальных клеток противоположного полушария; Г — специфические афферентные волокна из сенсорных ядер таламуса

Рис. 1-1. Связи коры больших полушарий.

Клеточный состав коры по разнообразию морфологии, функций, формам связи не имеет себе равных в других отделах ЦНС. Нейронный состав, распределение по слоям в разных областях коры различны. Это позволило выделить в мозге человека 53 цитоархитектонических поля. Разделение коры большого мозга на цитоархитектонические поля более четко формируется по мере совершенствования ее функции в филогенезе.

Функциональной единицей коры является вертикальная колонка диаметром около 500 мкм. Колонка - зона распределения разветвлений одного восходящего (афферентного) таламокортикального волокна. Каждая колонка содержит до 1000 нейронных ансамблей. Возбуждение одной колонки тормозит соседние колонки.

Восходящий путь проходит через все корковые слои (специфический путь). Неспецифический путь также проходит через все корковые слои. Белое вещество полушарий расположено между корой и базальными ганглиями. Оно состоит из большого количества волокон, идущих в разных направлениях. Это проводящие пути конечного мозга. Различают три вида путей.

  • проекционный — связывает кору с промежуточным мозгом и другими отделами ЦНС. Это восходящие и нисходящие пути;
  • комиссуральный - его волокна входят в состав мозговых комиссур, которые соединяют соответствующие участки левого и правого полушарий. Входят в состав мозолистого тела;
  • ассоциативный - связывает участки коры одного и того же полушария.

Зоны коры больших полушарий

По особенностям клеточного состава поверхность коры подразделяют на структурные единицы следующего порядка: зоны, области, подобласти, поля.

Зоны коры головного мозга разделяются на первичные, вторичные и третичные проекционные зоны. В них расположены специализированные нервные клетки, к которым поступают импульсы от определенных рецепторов (слуховых, зрительных и т.д.). Вторичные зоны представляют собой периферические отделы ядер анализаторов. Третичные зоны получают обработанную информацию от первичных и вторичных зон коры больших полушарий и играют важную роль в регуляции условных рефлексов.

В сером веществе коры больших полушарий различают сенсорные, моторные и ассоциативные зоны:

  • сенсорные зоны коры больших полушарий - участки коры, в которых располагаются центральные отделы анализаторов:
    зрительная зона — затылочная доля коры больших полушарий;
    слуховая зона — височная доля коры больших полушарий;
    зона вкусовых ощущений — теменная доля коры больших полушарий;
    зона обонятельных ощущений — гиппокамп и височная доля коры больших полушарий.

Соматосенсорная зона находится в задней центральной извилине, сюда приходят нервные импульсы от проприорецепторов мышц, сухожилий, суставов и импульсы от температурных, тактильных и других рецепторов кожи;

  • моторные зоны коры больших полушарии - участки коры, при раздражении которых появляются двигательные реакции. Располагаются в передней центральной извилине. При ее поражении наблюдаются значительные нарушения движения. Пути, по которым импульсы идут от больших полушарий к мышцам, образуют перекрест, поэтому при раздражении моторной зоны правой стороны коры возникает сокращение мышц левой стороны тела;
  • ассоциативные зоны - отделы коры, находящиеся рядом с сенсорными зонами. Нервные импульсы, поступающие в сенсорные зоны, приводят к возбуждению ассоциативных зон. Особенностью их является то, что возбуждение может возникать при поступлении импульсов от различных рецепторов. Разрушение ассоциативных зон приводит к серьезным нарушениям обучения и памяти.

Речевая функция связана с сенсорными и двигательными зонами. Двигательный центр речи (центр Брока) находится в нижней части левой лобной доли, при его разрушении нарушается речевая артикуляция; при этом больной понимает речь, но сам говорить не может.

Слуховой центр речи (центр Вернике) расположен в левой височной доле коры больших полушарий, при его разрушении наступает словесная глухота: больной может говорить, излагать устно свои мысли, но не понимает чужой речи; слух сохранен, но больной не узнает слов, нарушается письменная речь.

Речевые функции, связанные с письменной речью — чтение, письмо, — регулируются зрительным центром речи, расположенным на границе теменной, височной и затылочной долей коры головного мозга. Его поражение приводит к невозможности чтения и письма.

В височной доле находится центр, отвечающий за запоминание слое. Больной с поражением этого участка не помнит названия предметов, ему необходимо подсказывать нужные слова. Забыв название предмета, больной помнит его назначение, свойства, поэтому долго описывает их качества, рассказывает, что делают с этим предметом, но назвать его не может. Например, вместо слова «галстук» больной говорит: «это то, что надевают на шею и завязывают специальным узлом, чтобы было красиво, когда идут в гости».

Функции лобной доли:

  • управление врожденными поведенческими реакциями при помощи накопленного опыта;
  • согласование внешних и внутренних мотиваций поведения;
  • разработка стратегии поведения и программы действия;
  • мыслительные особенности личности.

Состав коры больших полушарий

Кора больших полушарий головного мозга является высшей структурой ЦНС и состоит из нервных клеток, их отростков и нейроглии. В составе коры имеются звездчатые, веретенообразные и пирамидные нейроны. Благодаря наличию складок кора имеет большую поверхность. Выделяют древнюю кору (архикортекс) и новую кору (неокортекс). Кора состоит из шести слоев (рис. 2).

Рис. 2. Кора больших полушарий головного мозга

Верхний молекулярный слой образован в основном дендритами пирамидных клеток нижележащих слоев и аксонами неспецифических ядер таламуса. На этих дендритах формируют синапсы афферентные волокна, приходящие от ассоциативных и неспецифических ядер таламуса.

Наружный гранулярный слой образован мелкими звездчатыми клетками и частично малыми пирамидными клетками. Волокна клеток этого слоя расположены преимущественно вдоль поверхности коры, формируя кортикокортикальные связи.

Слой пирамидных клеток малой величины.

Внутренний гранулярный слой, образованный звездчатыми клетками. В нем заканчиваются афферентные таламокортикальные волокна, начинающиеся от рецепторов анализаторов.

Внутренний пирамидный слой состоит из крупных пирамидных клеток, участвующих в регуляции сложных форм движения.

Мультиформный слой состоит из верстеновидных клеток, образующих кортикоталамические пути.

По функциональной значимости нейроны коры подразделяют на сенсорные , воспринимающие афферентные импульсы от ядер таламуса и рецепторов сенсорных систем; моторные , посылающие импульсы к подкорковым ядрам, промежуточному, среднему, продолговатому мозгу, мозжечку, ретикулярной формации и спинному мозгу; и промежуточные , осуществляющие связь между нейронами коры больших полушарий. Нейроны коры больших полушарий находятся в состоянии постоянного возбуждения, не исчезающего и во время сна.

В кору больших полушарий, к сенсорным нейронам поступают импульсы от всех рецепторов организма через ядра таламуса. И каждый орган имеет свою проекцию или корковое представительство, расположенное в определенных областях больших полушарий.

В коре больших полушарий имеется четыре чувствительные и четыре двигательные области.

Нейроны двигательной коры получают афферентную импульсацию через таламус от мышечных, суставных и кожных рецепторов. Основные эфферентные связи двигательной коры осуществляются через пирамидные и экстрапирамидные пути.

У животных наиболее развита лобная область коры и ее нейроны участвуют в обеспечении целенаправленного поведения. Если удалить эту долю коры, животное становится вялым, сонливым. В височной области локализуется участок слуховой рецепции, и сюда поступают нервные импульсы от рецепторов улитки внутреннего уха. Область зрительной рецепции находится в затылочных долях коры головного мозга.

Теменная область, внеядерная зона, играет важную роль в организации сложных форм высшей нервной деятельности. Здесь расположены рассеянные элементы зрительного и кожного анализаторов, осуществляется межанализаторный синтез.

Рядом с проекционными зонами располагаются ассоциативные зоны, которые осуществляют связь между сенсорной и двигательной зонами. Ассоциативная кора принимает участие в конвергенции различных сенсорных возбуждений, позволяющей осуществлять сложную обработку информации о внешней и внутренней среде.

Деятельность коры полушарий головного мозга

Деятельность коры больших полушарий головного мозга осуществляется при взаимодействии двух основных нервных процессов - возбуждения и торможения, которые лежат в основе образования, и усвоения условных рефлексов. Эти процессы под влиянием внешних или внутренних воздействий могут усиливаться или ослабляться, охватывать большие или меньшие участки коры головного мозга.

Распространение в коре головного мозга процессов возбуждения или торможения называется иррадиацией.

Охват этими процессами все меньшего количества нервных центров коры носит название концентрации.

Возбуждение или торможение в одном участке коры сопровождается возникновением обратного процесса в другом участке, что называется отрицательной индукцией.

Возбудимость одного и того же участка коры головного мозга понижается, после возбуждения и повышается после процессов торможения. Это явление называется последовательной индукцией.

В основе учения И. П. Павлова о рефлекторной природе деятельно­сти центральной нервной системы лежат три основных принципа: принцип детерминизма, принцип единства анализа и синтеза и принцип структурности.

Принцип детерминизма. В природе, в том числе в живом организме, ничто не совершается без причины. Любой рефлекторный акт имеет причину. Это одно из основных положений диалектического материализма.

Принцип единства анализа и синтеза. Нервная система в процесс? всей деятельности непрерывно расчленяет сложные раздражители, действующие на органы чувств человека, на более простые составные элементы (анализ) и тут же объединяет их в соответствующие обстановке системы (синтез).

Принцип структурности. Любой рефлекторный акт связан с опре­деленной областью коры головного мозга. Все процессы, протекающие в головном мозге, как и во всем организме, материальны, в их основе лежат материальные процессы, протекающие в определенных частях нервной системы.

Всю информацию, которая необходима водителю для надежного управления автомобилем, он получает с помощью анализаторов. Каждый анализатор состоит из трех отделов. Первый отдел - наружный, воспринимающий аппарат, в котором происходит превращение энергии воздействующего раздражителя в нервный процесс. Это наружные анатомические образования, или органы чувств (глаз, ухо, нос и др.). Второй от дел - это чувствительные нервы, по которым воздействующее раздраже­ние передается в соответствующий центр головного мозга. Третий отдел и есть такой центр, который представляет собой специализированный участок коры головного мозга, превращающий нервные раздражения в соответствующее ощущение (зрительное, звуковое, вкусовое, тепловое и т. д.). Так, например, в зрительном анализаторе первым, наружным отделом является внутренняя оболочка глазного яблока (сетчатка), состоящая из светочувствительных клеток - колбочек и палочек. Раздражение этих клеток, передаваемое по зрительному нерву в центр зрительного анализатора, дает ощущение света, цвета и зрительное восприятие предметов внешнего мира. Аналогично устроены и другие анализаторы: слуховой, кожный, обонятельный, вестибулярный и двигательный. Центральные отделы анализаторов расположены в различных областях коры головного мозга. Так, например, центр зрительного анализатора находится в затылочной области, слухового - в височной, двигательного - в центральной извилине мозга и т. д.

Кроме специфических свойств анализаторы имеют и общие свойства. Общим свойством анализаторов является их высокая возбудимость, которая выражается в возникновении очага возбуждения в коре головного мозга даже при небольшой силе раздражителя. Всем анализаторам присуща иррадиация возбуждения, когда возбуждение из центра анализатора распространяется на соседние участки коры головного мозга. Следующей общей особенностью анализаторов является адаптация, т. е. способность в большом диапазоне воспринимать раздражители различной силы. Например, при входе в темный зал человек вначале ничего не видит, а затем довольно хорошо различает не только очертания предметов, но и лица. Вода кажется горячей только в первый момент погружения в ванну, неприятный запах быстро перестает ощущаться и т. д. Приспособление анализаторов к раздражителям выражается как в повышении чувствительности (темновая адаптация), так и в понижении (световая адаптация). Анализаторы обладают способностью некоторое время сохранять процесс возбуждения и восприятия после прекращения действия раздражителя. Если быстро перемещать в темноте светящийся уголек, то вместо движущейся точки будет видна сплошная светящаяся полоса. Кроме того, всем анализаторам свойственна своя специфическая память.

Анализаторы

Различают внешние и внутренние анализаторы. Внешние анализаторы воспринимают информацию из окружающей среды. К ним относятся: зрительный, слуховой, обонятельный, вкусовой, осязательный, или тактильный, реагирующий на прикосновение или давление. Внутренние анализаторы воспринимают раздражение со стороны внутренней среды организма. К ним относятся: мыгиечно-двигательный, оценивающий положение тела в пространстве, взаимное расположение частей тела, воспринимающий напряжение и сокращение мышц; баростезический, реагирующий на изменение кровяного давления, и др. Температурный, болевой и вестибулярный анализаторы могут возбуждаться при действии раздражителей внешней и внутренней среды.

Наибольшее значение в деятельности водителя имеют зрительным, слуховой, вестибулярный, мышечно-двигательный и кожный анализаторы.

Установлено, что от 80 до 90 % информации от окружающего мира поступает в мозг через зрительный анализатор. Стенка глаза состоит из трех оболочек. Наружная оболочка называется белковой, или склерой. В передней части глазного яблока она переходит в прозрачную роговицу, через которую в глаз проникают лучи света. Позади роговицы находится радужная оболочка, играющая роль диафрагмы. В центре радужной обо­лочки имеется отверстие - зрачок. Позади зрачка расположен хрусталик, имеющий форму двояковыпуклой линзы. За хрусталиком находится же­леобразное стекловидное тело, заполняющее всю полость глаза.

Лучи света, проникая через прозрачные, преломляющие среды глаза (роговицу, хрусталик, стекловидное тело), попадают на внутреннюю обо­лочку глаза - сетчатку, которая является аппаратом, воспринимающим световые лучи. К сетчатке подходят окончания зрительного нерва, передающего зрительные импульсы в головной мозг. В сетчатке имеется два типа клеток, воспринимающих световые раздражения: палочки и колбочки. Дневное зрение осуществляется в основном клетками малой чувствительности - колбочками, палочки при этом не возбуждаются. В темное время суток начинают функционировать палочки, которые обеспечивают зрительное восприятие в условиях низкой освещенности.



У животных, ведущих дневной образ жизни, в сетчатке преобладают колбочки, а у ночных животных (совы, летучие мыши) - палочки. В состав палочек входит особое химическое вещество - зрительный пурпур, или родопсин. Слабый свет вызывает распад родопсина. Продукты этого распада возбуждают палочки, а затем возбуждение по зрительному нерву передается в кору больших полушарий. Так возникает ощущение света. В состав родопсина входит витамин А. При его недостатке зрительный пурпур не синтезируется, и человек с наступлением сумерек перестает видеть. Такое состояние называется куриной слепотой, которая особенно опасна для водителя при управлении автомобилем в темное время суток. Смешивая в разных сочетаниях три основных цвета: красный, зеленый и синий, можно получить разнообразие цветов. Это явление и легло в основу теории цветового зрения, согласно которой в сетчатке имеются колбочки трех видов. Одни возбуждаются красным цветом, другие зеленым, третьи синим. Комбинация же различной степени возбуждения в трех видах колбочек дает все остальные цвета. При равномерном раздражении всех колбочек возникает ощущение белого цвета

Слуховой анализатор воспринимает звуки различной высоты, силы и продолжительности. Орган слуха состоит из трех частей: наружного, среднего и внутреннего уха. Наружное ухо представлено ушной раковиной и наружным слуховым проходом длиной 2,5 см. Между слуховым проходом и полостью среднего уха расположена барабанная перепонка толщиной 0,1 мм. Благодаря своей упругости барабанная перепонка способна без искажений повторить колебания воздуха. В полости среднего уха находятся три слуховые косточки: молоточек, наковальня и стремечко. Косточки передают колебания барабанной перепонки улитке (так называемся узкий изогнутый костный канал). Полость среднего уха специальным каналом - евстахиевой трубой - соединена с носоглоткой. При помощи евстахиевой трубы в среднем ухе поддерживается давление, равное атмосферному, что обеспечивает неискаженное колебание барабанной перепонки. Эти колебания передаются в кортиев орган внутреннего уха, который расположен в улитке. Кортиев орган имеет основную мембрану, на которой натянуты тончайшие волокна. Таких волокон около 24 тысяч. Звуковые волны вызывают колебания волокон, возбуждающие окончания слухового нерва. Это возбуждение передается в височную область коры головного мозга и воспринимается как ощущение звука. Согласно теории слуха, волокна широкой частью улитки в области вершины натянуты слабо и воспринимают низкие тона. Короткие и сильно натяну­тые волокна у основания улитки реагируют колебанием на высокие тона. Вестибулярный анализатор принимает участие в восприятии дви­жения и положения тела. Периферическую часть вестибулярного анализатора составляют преддверие и полукружные каналы, которые расположены тоже во внутреннем ухе. Преддверие представляет собой небольшую полость, по обеим сторонам которой находятся улитка и три полукружных канала. Полукружные каналы располагаются в трех взаимно перпендикулярных плоскостях и своими концами открываются в полости преддверия. В этой части каждого канала находятся чувствительные окончания (рецепторы) вестибулярного нерва. При движении или изменении положения тела эти окончания раздражаются перемещением находящейся в канале жидкости, которая называется эндолимфой. Возбуждение передается в кору головного мозга и воспринимается как движение или изменение положения тела в пространстве. Значительное раздражение вестибулярного аппарата происходит при качке на море, болтанке в воздухе и при езде на автомобиле. В результате такого укачивания развивается морская или воздушная болезнь, при которой появляется головная боль, головокружение, общая слабость, потливость, тошнота и рвота. Такое состояние чаще возникает у пассажиров и очень редко у водителей автомобилей.

Мышечно-двигательный анализатор имеет исключительно большое значение в деятельности водителя автомобиля, так как он осуществляет контроль за правильностью и точностью выполняемых движений. В мышцах и суставах имеются чувствительные нервные клетки, которые называются проприорецепторами. При сокращении мышц, изменении положения тела эти клетки посылают в кору головного мозга импульсы, сигнализирующие о сокращении или расслаблении мышц, о малейших изменениях положения любой части тела в пространстве.

Благодаря такой информации можно с закрытыми глазами опреде­лить, в каком положении находятся конечности и корпус. Что касается водителя, то с помощью двигательного анализатора он мгновенно получает информацию о малейшем отклонении автомобиля, а также о положении органов управления. Эта информация имеет огромное значение для своевременных управляющих действий водителя в опасных дорожных ситуациях. Двигательный анализатор играет ведущую роль в образовании новых движений, в формировании и совершенствовании двигательных водительских навыков. Под влиянием профессиональной тренировки повышается возбудимость, а следовательно, и чувствительность двигательного анализатора, что позволяет получать от него все более точную информацию, необходимую для надежного управления автомобилем. Автоматизация двигательных навыков позволяет разгрузить внимание водителя, что очень важно для безопасности дорожного движения.

Кожный анализатор реагирует на болевые, температурные и тактильные раздражители. Тактильные раздражители дают водителю дополнительную информацию об изменении скорости или направления движения автомобиля.

Все анализаторы играют важную роль в деятельности водителя, и нарушение их функций может резко снизить их надежность.

Контрольные вопросы

1. Расскажите о роли анатомии и физиологии человека в инженерной " психологии.

2. На какие виды делится нервная система человека?

3. Что называется рефлексом?

4. Что такое иррадиация?

5.Расскажите о значении в деятельности водителя зрительного, слухового, вестибулярного, мышечно-двигательного и кожного анализаторов

Ощущение и восприятие водителя автомобиля

Цель – дать понятие ощущения и восприятия.

1. Психические процессы получения информации.

2. Зрительное восприятие водителя.

3. Восприятие времени.

4. Двигательное восприятие.

5. Восприятие звуков.

6. Иллюзии и галлюцинации.