Домой / Другие болезни / Вольфрам - что за металл? Свойства и сферы применения. Где применяется вольфрам высокой плотности

Вольфрам - что за металл? Свойства и сферы применения. Где применяется вольфрам высокой плотности

Вольфрам выделяется среди металлов не только тугоплавкостью, но и массой. Плотность вольфрама при нормальных условиях составляет 19,25 г/см³, это примерно в 6 раз больше, чем у алюминия. По сравнению с медью вольфрам тяжелее ее в 2 раза. На первый взгляд, большая плотность может показаться недостатком, потому что сделанные из него изделия будут тяжелыми. Но даже эта особенность металла нашла свое применение в технике. Полезные свойства вольфрама, обусловленные высокой плотностью:

  1. Возможность концентрировать большую массу в малом объеме.
  2. Защита от ионизирующего излучения (радиации).

Первое свойство объясняется внутренним строением металла. Ядро атома содержит 74 протона и 110 нейтронов, т. е. 184 частицы. В Периодической системе химических элементов, в которой атомы расположены по возрастанию атомной массы, вольфрам находится на 74 месте. По этой причине вещество, состоящее из тяжелых атомов, будет иметь большую массу. Способность защищать от радиации присуща всем материалам с высокой плотностью. Это обусловлено тем, что ионизирующее излучение, сталкиваясь с любым препятствием, передает ему часть своей энергии. Более плотные вещества имеют высокую концентрацию частиц в единице объема, поэтому ионизирующие лучи претерпевают больше столкновений и, соответственно, теряют больше энергии. Использование металла базируется на вышеуказанных свойствах.

Применение вольфрама

Высокая плотность — огромное преимущество вольфрама среди других металлов.

Вольфрам находит широкое применение в разных областях промышленности.

Использование, основанное на большой массе металла

Значительная плотность делает вольфрам ценным материалом для балансировки. Изготовленные из него балансировочные грузики уменьшают нагрузку, действующую на детали. Таким образом продлевается их эксплуатационный период. Области применения вольфрама:

  1. Аэрокосмическая сфера. Запчасти из тяжелого металла уравновешивают действующие моменты сил. Поэтому вольфрам используется для изготовления лопастей вертолетов, пропеллеров, рулей направления. По причине того, что материал не обладает магнитными свойствами, он применяется в производстве бортовых электронных систем авиации.
  2. Автомобильная промышленность. Вольфрам применяется там, где необходимо сосредоточить большую массу в малом объеме пространства, например, в автомобильных двигателях, установленных на тяжелых грузовиках, дорогих внедорожниках, машинах, работающих на дизельном топливе. Также вольфрам является выгодным материалом для изготовления коленвалов и маховиков, грузов на шасси. Кроме высокой плотности, металл характеризуется большим модулем упругости, благодаря этим качествам он применяется для гашения колебаний на приводах.
  3. Оптика. Вольфрамовые грузики сложной конфигурации выступают балансирами в микроскопах и других высокоточных оптических инструментах.
  4. Производство спортинвентаря. Вольфрам используется вместо свинца в спортивном оборудовании, потому что, в отличие от последнего, не наносит вреда здоровью и окружающей среде. Например, материал применяется в производстве клюшек для гольфа.
  5. В машиностроении. Из вольфрама делают вибромолоты, которыми забивают сваи. В середине каждого прибора находится вращающийся груз. Он преобразовывает энергию вибраций в силу для забивания. Благодаря наличию вольфрама имеется возможность применять вибромолоты для уплотненного грунта значительной толщины.
  6. Для изготовления высокоточных инструментов. В глубоком сверлении применяются прецизионные приборы, держатель которых не должен поддаваться вибрациям. Этому требованию соответствует вольфрам, имеющий к тому же и высокий модуль упругости. Антивибрационные держатели обеспечивают плавную работу, поэтому их используют в расточных и шлифовальных оправках, в стержнях инструментов. На основе вольфрама изготавливают рабочую часть инструмента, так как он обладает повышенной твердостью.

Использование, основанное на способности защищать от радиации

Коллиматоры из вольфрама в хирургии.

  • По этому критерию вольфрамовые сплавы опережают чугун, сталь, свинец и воду, поэтому из металла делают коллиматоры и защитные экраны, которые используются при радиотерапии. Сплавы из вольфрама не подвержены деформации и отличаются высокой надежностью. Применение многолепестковых коллиматоров дает возможность направить излучение на определенный участок пораженной ткани. Во время терапии в первую очередь делают рентгеновские снимки, чтобы локализовать расположение и определить характер опухоли. Затем лепестки коллиматора перемещаются электродвигателем в нужное положение. Может быть задействовано 120 лепестков, с помощью которых создается поле, повторяющее форму опухоли. Далее на пораженный участок направляются лучи, имеющие высокую радиацию. При этом опухоль получает облучение посредством того, что многолепестковый коллиматор вращается вокруг пациента. Чтобы защитить от радиации соседние здоровые ткани и окружающую среду, коллиматор должен обладать высокой точностью.
  • Разработаны специальные кольцевые коллиматоры из вольфрама для радиохирургии, облучение которых направлено на голову и шею. Прибор осуществляет высокоточную фокусировку гамма-излучения. Также вольфрам входит в состав пластин для компьютерных томографов, экранирующих элементов для детекторов и линейных ускорителей, дозиметрического оборудования и приборов неразрушающего контроля, емкостей для радиоактивных веществ. Вольфрам используется в устройствах для бурения. Из него делают экраны для защиты погружающихся инструментов от рентгеновского и гамма-излучении.

Классификация вольфрамовых сплавов

Такие критерии, как повышенная плотность и тугоплавкость вольфрама, дают возможность использовать его во многих отраслях. Однако современным технологиям иногда требуются дополнительные свойства материала, которыми чистый металл не обладает. Например, его электропроводность меньше, чем у меди, а изготовление детали сложной геометрической формы затруднительно из-за хрупкости материала. В таких ситуациях помогают примеси. При этом их количество часто не превышает 10%. После добавления меди, железа, никеля вольфрам, плотность которого остается очень высокой (не меньше 16,5 г/см³), лучше проводит электрический ток и становится пластичным, что дает возможность хорошо его обрабатывать.

ВНЖ, ВНМ, ВД

В зависимости от состава сплавы по-разному маркируются.

  1. ВНЖ - это сплавы вольфрама, которые содержат никель и железо,
  2. ВНМ - никель и медь,
  3. ВД - только медь.

В маркировке после заглавных букв следуют цифры, указывающие на процентное содержание. Например, ВНМ 3–2 — это вольфрамовый сплав с добавлением 3% никеля и 2% меди, ВНМ 5–3 содержит в примеси 5% никеля и 3% железа, ВД-30 состоит на 30% из меди.

Вольфрам - металл с уникальными свойствами. Он имеет самую высокую температуру кипения (5555 °C - такая же температура в фотосфере Солнца) и плавления (3422 °C) среди металлов, при этом - самый низкий коэффициент теплового расширения.


Кроме того, он - один самых твёрдых, тяжёлых, стабильных и плотных металлов: плотность вольфрама сравнима с плотностью и урана и в 1, 7 раза выше, чем у свинца.

Его электропроводность почти в 3 раза ниже, чем у меди, однако достаточно высока. В очищенном виде вольфрам - серебристо-белый, напоминает по внешнему виду сталь или платину, при значительном нагреве - до 1600 °C - отлично куётся.

История открытия и применения

Своё название металл получил от вольфрамита - минерала, название которого с латинского переводится как «волчья пена», а с немецкого - как «волчьи сливки». Такое странное наименование связано с поведением минерала: он мешал выплавлять олово, когда сопровождал добытую оловянную руду, превращая ценный в средние века материал в пену шлаков. Про него тогда говорили: «ест олово, словно овцу волк».

Открытие чистого вольфрама произошло в двух местах одновременно. В 1781 году химик Шееле (Швеция) получает «тяжёлый камень», воздействуя азотной кислотой на шеелит. А в 1783 году химики Элюар (Испания) также сообщают о выделении чистого вольфрама.


Главные запасы металла оказались в Казахстане, Канаде, Китае, США.

Применение вольфрама. Карбид вольфрама.

Примерно 50% вольфрама используется для производства твёрдых материалов, в особенности - карбида вольфрама с температурой плавления 2770 °С.

Карбид вольфрама - химическое соединение равных по числу атомов вольфрама и углерода. Он в 2 раза жёстче, чем сталь, имеет коэффициент жёсткости 9 по шкале Мооса ( коэффициент 10).

Карбид вольфрама применяют для изготовления:

— режущих инструментов, чрезвычайно устойчивых к истиранию и воздействию высоких температур;

— бронебойных боеприпасов;

— танковой брони;


— деталей самолётов и двигателей;

— деталей космических кораблей и ракет;

— оборудования для атомной промышленности;

— балластов , коммерческих воздушных судов, гоночных автомобилей;

— хирургических инструментов, предназначенных для открытой (полостной) хирургии и лапароскопической (ножницы, пинцеты, захваты, резаки и другие), - они дороже, чем медицинская сталь, однако обладают лучшей производительностью;

— ювелирных изделий, особенно свадебных колец: популярность вольфрама в обручальных кольцах вызвана физическими свойствами металла (прочностью, тугоплавкостью, словно символизирующими подобную же прочность отношений) и его внешним видом - отполированный, вольфрам неопределённо долго сохраняет сияющий, зеркальный вид, так как в обычной жизни поцарапать его чем-то невозможно;

— шарика в дорогих шариковых ручках;

— калибровочных блоков, используемых, в свою очередь, для производства прецизионных длин в размерной метрологии.

Другие случаи применения вольфрама

Вольфрам применяют в производстве нагревательных элементов для высокотемпературных вакуумных печей, нитей накаливания в разнообразных приборах освещения.


Сульфид вольфрама нашёл применение в качестве высокотемпературной смазки, выдерживающей нагрев до 500 °C. Монокристаллы вольфраматов используют в ядерной физике и медицине.

Вольфрам считается самым тугоплавким из известных металлов. Впервые был получен в 18 веке, но промышленное использование началось гораздо позже, с развитием технологии производства.

Основные характеристики

Как самый тугоплавкий металл, вольфрам имеет специфические свойства:

  • Температура плавления вольфрама - примерно соответствует температуре солнечной короны - 3422 °С.
  • Вместе с этим, плотность чистого вольфрама ставит его в один ряд с наиболее плотными металлами. Его плотность практически равна плотности золота - 19,25 г/см 3 .
  • Теплопроводность вольфрама зависит от температуры и составляет от 0,31 кал/см·сек·°С при 20°С до 0,26 кал/см·сек·°С при 1300°С.
  • Теплоемкость также близка к золоту и составляет 0.15·10 3 Дж/(кг·К).

Металл имеет кубическую объемноцентрированную кристаллическую решетку. Несмотря на высокую твердость, вольфрам в нагретом состоянии очень пластичен и ковок, что позволяет изготавливать из него тонкую проволоку, имеющую широкое применение.

Имеет серебристо-серый цвет, который не меняется на открытом воздухе, поскольку вольфраму присуща высокая химическая стойкость, а с кислородом он реагирует только при температуре выше красного каления.

Химические свойства элемента, как правило, начинают проявляться при нагреве выше нескольких сотен градусов. В обычных условиях он не взаимодействует с большинством известных кислот, кроме смеси плавиковой и азотной кислот.
В присутствии определенных окислителей может реагировать с расплавами щелочей. При этом для начала реакции требуется нагрев до температуры 400 - 500 °С, а далее реакция идет бурно, с выделением тепла.

Некоторые соединения, особенно карбид вольфрама, обладают очень высокой твердостью и находят применение в металлургическом производстве для обработки твердых сплавов.

Приведенные характеристики вольфрама определяют специфику областей применения металла, как в чистом виде, так и в составе различных сплавов и химических соединений.
Вольфрам входит в состав многих жаростойких сплавов в качестве легирующей добавки для повышения твердости, температуры плавления и коррозионной стойкости.
Близость плотности и теплоемкости вольфрама и золота теоретически может служить для подделки золотых слитков, однако это легко можно выявить при измерении электрического сопротивления и при переплавке золотого слитка.

Получение вольфрама

В чистом, самородном виде металл в природе не встречается. Большинство месторождений образовано оксидами. Содержание соединений в пересчете на чистый металл в рудном месторождении составляет 0.2 - 2%.
Химическая стойкость и высокая температура плавления допускают получение вольфрама из руды только при использовании специфических методик.

В основе большинства методов промышленного получения вольфрама лежит восстановление металла из его оксида. Первая стадия производства состоит в обогащении вольфрамосодержащей руды. Затем при помощи операций выщелачивания и восстановления получают оксид WO 3 , который восстанавливают до чистого металла в атмосфере водорода. Температура процесса составляет около 700 °С.

В результате реакции получается тонкодисперсный металлический порошок. Высокая температура плавления не позволяет оформить металл в виде слитков, поэтому порошок вольфрама сначала прессуют под высоким давлением, а затем спекают в среде водорода, используя нагрев до температуры 1300 °С. Через полученные бруски пропускают мощный электрический ток. В результате высокого переходного сопротивления между зернами металла происходит нагрев и плавление заготовки.

Очистку полученного слитка производят методом зонной плавки, подобно технологии получения сверхчистых полупроводников. Производство вольфрама по данной технология позволяет получить металл высокой степени чистоты без дополнительных операций очистки.

При производстве сплавов, все составляющие добавляются еще перед стадией прессования порошка, поскольку в дальнейшем это сделать уже невозможно. В процессе прессовки, спекания и дальнейшей обработки заготовки (прессование, прокатка) обеспечивается равномерное распределение примесей в сплаве.

Обработка вольфрама производится при температурах около полутора тысяч градусов. При таком нагреве металл становится очень пластичным и допускает ковку, штамповку. Тонкая проволока для спиралей ламп накаливания изготавливается методом волочения. При этом кристаллы металлы располагаются вдоль проволоки, повышая ее прочность. Поскольку к спиралям ламп предъявляются высоки требования по однородности, вольфрамовый провод дополнительно подвергают операциям электрохимического полирования.

Применение вольфрама

Большинство областей применения вольфрама используют такие его качества, как высокая температура плавления, плотность и пластичность. Вольфрам незаменим в следующих областях:

  • Чистый вольфрам, это единственный металл, который применяется в нитях накаливания осветительных ламп, радиолампах, кинескопах и прочих электровакуумных приборах;
  • В чистом виде и в составе сплавов используется при производстве сердечников подкалиберных бронебойных снарядов и пуль;
  • Высокая плотность вольфрама позволяет изготавливать роторы малогабаритных гироскопов ракетной техники и космических аппаратов;
  • Изготовление неплавящихся электродов при аргонно-дуговой сварке;
  • Устройства защиты от ионизирующих излучений из вольфрама эффективнее, чем традиционные свинцовые. Использование вольфрама экономически выгодно, несмотря на более высокую стоимость, чем у свинца. Это вызвано тем, что расход вольфрама при тождестве технических характеристик изделия намного меньше.
  • Изделия из вольфрама не нуждаются в защите от коррозии благодаря низкой химической активности при нормальных температурных условиях.

Соединения вольфрама с углеродом более известны как «победит». Их высокая твердость используется в режущих напайках металлообрабатывающих инструментов - резцов, сверл, фрез. Инструменты с победитовыми напайками используются для обработки практически любых материалов, начиная от древесины, где почти не требуют периодической заточки, до любых пород камня. Для заточки победитовых инструментов требуются абразивы с самой высокой твердостью. В полной мере этому соответствуют алмазные и эльборовые абразивы имеющие самую высокую твердость среди всех известных.

Победитовые напайки крепятся к рабочим кромкам инструмента при помощи пайки медью. В качестве флюса используется бура.

Карбид вольфрама используется в ювелирных изделиях, в частности, в кольцах. Высокая твердость материала позволяет сохранить блеск изделия в течение всего срока службы.

Победит изготавливают порошковым методом, используя для скрепления кристаллом карбида вольфрама кобальт.

Сплавы на основе вольфрама

Сплавы вольфрама возможно получить исключительно методом порошковой металлургии. Это вызвано большой разницей температур плавления входящих в состав сплава металлов. Порошки исходных составляющих после смешивания прессуются, а затем подвергаются спеканию. В результате капиллярных сил более легкоплавкие металлы заполняют пространство между зернами вольфрама, образуя монолитный сплав. На границах зерен образуются твердые растворы компонентов сплава.

Наибольшее распространение получили сплавы вольфрама с медью, железом и никелем. Самые распространенные сплавы ВНЖ и ВНМ включают в себя вольфрам - никель - железо и вольфрам - никель - медь.

Для достижения особых характеристик в состав могут входить также серебро, хром, кобальт и молибден.

Вольфрамовые сплавы находят применение для изготовления деталей и устройств, в которых важна высокая плотность при малых габаритных размерах. Это всевозможные противовесы, маховики, грузы центробежных регуляторов, сердечники пуль и снарядов.

Известно не очень много марок вольфрама. В первую очередь, это технически чистый вольфрам - ВЧ.

Используемые в промышленности марки вольфрама обычно включают в себя некоторые добавки. Материал, легированный лантаном, обозначается как ВЛ, иттрием - ВИ. Указанные легирующие добавки еще более улучшают механические и технологические качества металла.

Сплавы с рением - ВР5, ВР20 - используются в производстве высокотемпературных термопар.

Легирование торием повышает эмиссионные свойства вольфрама, что особенно важно при изготовлении катодов мощных электровакуумных ламп. Данная добавка также улучшает способность к зажиганию электрической дуги при аргонно-дуговой сварке.

Сплавы вольфрама с медью и серебром используются для изготовления контактов сильноточной коммутационной аппаратуры. Медь и серебро при высокой электропроводности не обладают высокой механической прочностью. При прохождении высоких токов возможно расплавление контактных групп. Контакты из вольфрамовых сплавов свободны от этих недостатков, не смотря на несколько большее электрическое сопротивление.

Высокая плотность сплавов позволят использовать их для изготовления контейнеров для хранения радиоактивных веществ, экранов для защиты от γ-излучения.