Домой / Язва / Значение слова полиплоидия в энциклопедии биология. Научно-технический энциклопедический словарь что такое полиплоидия, что означает и как правильно пишется Что такое полиплоидия

Значение слова полиплоидия в энциклопедии биология. Научно-технический энциклопедический словарь что такое полиплоидия, что означает и как правильно пишется Что такое полиплоидия

Что такое "ПОЛИПЛОИДИЯ"? Как правильно пишется данное слово. Понятие и трактовка.

ПОЛИПЛОИДИЯ (от греч. polyploos - многократный и eidos - вид) , эуплоидия, наследств. изменчивость, связанная с кратным увеличением числа наборов хромосом в клетках р-ний или (реже) ж-ных. Соматич. клетки р-ний и ж-ных, как правило, содержат диплоидное, или двойное (2n), число хромосом (см. Диплоид), половые - уменьшенное вдвое, или гаплоидное (n), число хромосом (см. Гаплоид). При П. наблюдаются отклонения от диплоидного числа хромосом в соматич. клетках и от гаплоидного - в половых; могут возникать клетки, в к-рых каждая хромосома представлена трижды (Зn - триплоиды), четырежды (4n - тетраплоиды), пять раз (5n - пентаплоиды) и т. д. В целом такие организмы наз. полиплоидами. П. возникает в результате нарушения расхождения хромосом в митозе или мейозе (значительно реже) под действием физ. и хим. факторов. У полиплоидных форм р-ний (обычно перекрёстноопыляющихся) часто наблюдается гигантизм - увеличение размеров клеток и органов (листьев, цветков, плодов), повышенное содержание ряда хим. в-в, изменение сроков цветения и плодоношения. В природе известны полиплоидные ряды в пределах разл. родов р-ний и низших ж-ных. Напр., пшеница представлена рядом видов с 14, 28, 42 и 56 хромосомами (в последнем случае это формы, выделенные в потомстве от скрещивания пшеницы и пырея). Естеств. П. значительно чаще обнаруживается на границах высокогорья, пустынь, полярных областей, где вероятность затруднения нормального деления ядра клетки больше. В указанных зонах до 80% видов организмов - полиплоиды. Многие из естеств. полиплоидов дали начало культурным растениям, таким, как картофель, хлопчатник, сах. тростник и др. Полиплоиды м. б. использованы как исходный материал для селекции. Различают автополиплоидию и аллополиплоидию. Автополиплоидия - результат кратного увеличения гаплоидного набора хромосом одного вида. Перевод на полиплоид-ный уровень сильно усложняет механизм наследования, часто снижает плодовитость, т. к. увеличивается число хромосом и генов, контролирующих разл. признаки, по-иному проявляется их взаимодействие. У автотетраплоидов во втором и последующих поколениях сохраняется более высокий уровень гетерозиготности, чем у диплоидных форм. Это м. б. использовано для продления гетерозиса у гибридов в неск. поколениях. У кукурузы путём колхицинирования были получены тетраплоидные формы простых межлинейных гибридов, представляющих практич. интерес. Аллополиплоидия - результат объединения наборов хромосом разных видов после образования межвидовых гибридов. Соответственно полиплоидные формы наз. автополиплоидами или аллополиплоидами. Если у аллополиплоида имеется полный двойной набор того и другого вида, его наз. амфидиплоидом. При скрещивании двух разных видов или родов обычно получается бесплодное потомство. При частичной гомологичности хромосом гибрид имеет пониженную плодовитость. При автосинтетической конъюгации амфидиплоиды имеют большую константность (см. Гибриды). Аллотетраплоидам свойственна резко выраженная гибридная мощность, стойко сохраняющаяся в последующих поколениях. Классич. пример аллополиплоидии - капустно-редечные гибриды, а также ржано-пшеничные и пырейно-пшеничные аллополиплоиды. Часто под термином “П.” понимают любое количеств. изменение хромосом, в т. ч. и анеуплоидию. Анеуплоиды - организмы, имеющие в осн. наборе увеличенное или уменьшенное, но не кратное гаплоидному, число хромосом. В зависимости от того, произошло уменьшение или увеличение числа хромосом по сравнению с определ. уровнем плоидности, при классификации анеуплоидных чисел используют соответственно приставки гипо- и гипер-. Напр., гипердиплоидные числа хромосом имеют трисомики (2n +1) и тетрасомики (2n + 2), гиподиплоид-ные - моносомики (2n - 1) и нуллисо-мики (2n - 2). Если число хромосом анеуплоида превышает диплоидное, он наз. несбалансированным полиплоидом. Анеуплоиды используют путём моносомного анализа для установления локализации генов в определ. хромосомах.

ПОЛИПЛОИДИЯ - ПОЛИПЛОИДИЯ (от греческого polyploos - многократный и eidos - вид), наследственное изменение, заключ...

Метод полиплоидии широко применяется селекционерами для создания новых сортов растений . Суть данного процесса заключается в увеличении числа наборов хромосом в клетках тканей организма, кратное одинарному (гаплоидному) набору хромосом. В результате происходит увеличение размеров самих клеток и всего организма в целом. Это фенотипические проявление полиплоидии.

Те организмы, в клетках которых имеется более двух наборов хромосом, носят название полиплоидов. Так, триплоиды содержат три набора, тетраплоиды – четыре, пентаплоиды – пять и т.д. Полиплоиды, которые имеют нечетный набор хромосом, являются стерильными из-за того, что их половые клетки с неполным набором хромосом, не кратным гаплоидному, не делятся. Потомства они не дают.Доказано, что увеличение количества хромосом повышает стойкость растений к патогенным микроорганизмам и некоторым другим неблагоприятным факторам внешней среды, в частности, к радиации. Это объясняется тем, что при повреждении одной или двух гомологичных хромосом остальные такие же остаются нетронутыми. Таким образом, полиплоидные организмы жизнеспособнее диплоидных.

Возникновение полиплоидии

Причиной возникновения является нерасхождение хромосом в мейозе. В таком случае у половой клетки оказывается полный набор соматической клетки. Если такая гамета сливается с обычной, то получается триплоидная зигота, дающая начало триплоиду. При условии, что две гаметы содержат диплоидный набор, их слияние ведет к образованию тетраплоида.

Также полиплоидные организмы могут появиться при неоконченном митозе. Так, если после удвоения клетки не происходит ее деления, то получается тетраплоид. Тетраплоидные зиготы являются предшественниками тетраплоидных побегов, причем в цветках будут формироваться диплоидные гаметы вместо гаплоидных. При самоопылении может образоваться тетраплоид, а при обычном опылении гаметой – триплоид. Если растение размножается вегетативным путем, то исходная плоидность сохраняется.В дикой природе полиплоидия широко распространена, однако представлена неравномерно среди различных сообществ растительных и животных организмов. Данная разновидность мутаций играет важную роль в эволюционных преобразованиях диких и культурных покрытосеменных растений, среди которых около 50% видов являются полиплоидами.

Так как полиплоидные растения характеризуются ценными хозяйственными свойствами, то искусственную полиплоидизацию используют в растениеводстве с целью получения селекционного материала. Для этого в селекции применяются особые мутагены, к примеру, колхицин, который нарушает расхождение хромосом в мейозе и митозе.

Примерно 80% существующих ныне сортов разных видов культурных растений являются полиплоидами. К ним относятся овощные и плодово-ягодные культуры, злаковые, цитрусовые, технические, декоративные и лекарственные растения. Ярким примером результата полиплоидии служит триплоидная сахарная свекла, которая в отличие от обычной, имеет большую урожайность вегетативной массы и более крупные размеры корнеплодов в сочетании с их повышенной сахаристостью и устойчивостью к различным болезням. Но триплоидные растения не дают потомства. Поэтому селекционеры могут получать гибридные семена только при скрещивании тетраплоидной и диплоидной форм. Вследствие доказанной стерильности триплоидных гибридов были получены бессеменные плоды арбуза, винограда, банана, которые пользуются большим спросом.

Существуют такие виды полиплоидии: автополиплоидия и аллополиплоидия. Первый вид описан выше. При аллополиплоидии ученые объединили метод искусственной полиплоидии с отдаленной гидридизацией. Так, были получены плодовитые гибриды растений, например, редьки и капусты, пшеницы и ржи, пшеницы и пырея. Эти гибриды обладают высокой урожайностью, холодостойкостью, неприхотливостью, устойчивостью к болезням.

Прочитав эту статью, вы узнаете, что такое полиплоидия. Мы рассмотрим, какую роль она играет. Вы также узнаете, какие бывают виды полиплоидии.

Образование полиплоидов

Прежде всего, расскажем о том, что подразумевается под этим загадочным словом. Клетки или особи, имеющие более двух наборов хромосом, называются полиплоидами. Полиплоидные клетки с небольшой частотой возникают в результате «ошибок» митоза. Это происходит, когда хромосомы делятся, а цитокинез не происходит. Таким образом могут образоваться клетки с удвоенным числом хромосом (диплоиды). Если они, пройдя через интерфазу, будут делиться, то смогут дать начало (половым или бесполым путем) новым особям, клетки которых будут иметь вдвое больше хромосом, чем у родителей. Соответственно, процесс их образования - вот что такое полиплоидия. Полиплоидные растения могут быть получены искусственно с помощью колхицина — алкалоида, подавляющего образование митотического веретена в результате нарушения образования микротрубочек.

Свойства полиплоидов

У этих растений изменчивость часто бывает значительно уже, чем у родственных диплоидов, поскольку каждый ген представлен у них по меньшей мере в удвоенном числе. При расщеплении в потомстве гомозиготные по какому-нибудь особи составят только 1/16 вместо 1/4 у диплоидов. (В обоих случаях принимается, что частота рецессивных аллелей равна 0,50.) Полиплоидам свойственно самоопыление, еще более снижающее их изменчивость, несмотря на то что родственные им диплоиды преимущественно опыляются перекрестно.

Где встречаются полиплоиды

Итак, мы ответили на вопрос, что такое полиплоидия. А где же встречаются такие растения?

Одни полиплоиды лучше приспособлены к сухим местам или более низким температурам, чем исходные диплоидные формы, в то время как другие лучше приспособлены к особым типам почв. Благодаря этому они могут заселять места с экстремальными условиями существования, в которых их диплоидные предки, скорее всего, погибли бы. С небольшой частотой они встречаются во многих естественных популяциях. Они легче, чем соответствующие им диплоиды, вступают в неродственные скрещивания. При этом сразу же могут получаться плодовитые гибриды. Реже полиплоиды гибридного происхождения образуются путем удвоения числа хромосом у стерильных диплоидных гибридов. Это один из путей восстановления плодовистости.

Первый документированный случай полиплоидии

Именно таким, менее обычным, путем образовались полиплоидные гибриды между редькой и капустой. Это был первый хорошо задокументированный случай полиплоидии. Оба рода принадлежат к семейству крестоцветных и находятся в близком родстве. В и того и другого вида находится 18 хромосом, и в первой метафазе мейоза всегда обнаруживается 9 пар хромосом. С некоторым трудом был получен гибрид между этими растениями. В мейозе он имел 18 непарных хромосом (9 от редьки и 9 от капусты) и был совершенно бесплоден. Среди этих гибридных растений спонтанно образовался полиплоид, у которого в соматических клетках было 36 хромосом и в процессе мейоза регулярно образовывались 18 пар. Иными словами, полиплоидный гибрид имел все 18 хромосом как редьки, так и капусты, и они функционировали нормально. Этот гибрид был довольно плодовитым.

Полиплоиды-сорняки

Некоторые полиплоиды возникали как сорняки в местах, связанных с деятельностью человека, и иногда они достигали удивительного процветания. Один из хорошо известных примеров — обитатели соленых болот из рода Spartina. Один из видов, S. maritima (на фото ниже), встречается на болотах вдоль берегов Европы и Африки. Другой вид, S. alterniflora, был завезен в Великобританию с востока Северной Америки около 1800 г. и впоследствии широко распространился, образовав крупные локальные колонии.

Пшеница

Одной из важнейших полиплоидных групп растений можно считать род Triticum пшеницы (на фото далее). Самая распространенная в мире хлебная культура — мягкая пшеница (Т. aestivum) — имеет 2n = 42. возникла как минимум 8000 лет назад, вероятно, в Центральной Европе, в результате естественной гибридизации возделываемой пшеницы, имеющей 2n = 28, с диким злаком того же рода, имеющим 2n = 14. Дикий злак, вероятно, рос как сорняк среди посевов пшеницы. Гибридизация, давшая начало мягкой пшенице, могла произойти между полиплоидами, появлявшимися время от времени в популяциях обоих родительских видов.

Вполне вероятно, что как только 42-хромосомная пшеница с ее полезными признаками появилась на полях первых земледельцев, они сразу ее заметили и отобрали для дальнейшего культивирования. Одна из ее родительских форм, 28-хромосомная возделываемая пшеница, произошла в результате гибридизации двух диких 14-хромосомных видов с Ближнего Востока. имеющие 2n = 28, и теперь продолжают возделываться наряду с 42-хромосомными. Такие 28-хромосомные пшеницы представляют собой главный источник зерна для производства макарон благодаря высокой клейкости их белка. Вот какую роль играет полиплоидия.

Triticosecale

Исследования последних лет показали, что новые линии, полученные с помощью гибридизации, могут улучшить сельскохозяйственное производство. Полиплоидия в селекции применяется очень широко. Особенно многообещающим является Triticosecale — группа созданных человеком гибридов между пшеницей (Triticum) и рожью (Secale). Некоторые из них, сочетающие урожайность пшеницы с неприхотливостью ржи, наиболее устойчивы к линейной ржавчине — болезни, наносящей большой ущерб сельскому хозяйству. Эти свойства особенно важны в высокогорных районах тропиков и субтропиков, где ржавчина — главный культивирование пшеницы. Triticosecale теперь выращивается в больших масштабах и получила широкую популярность во Франции и других странах. Наибольшую известность имеет 42-хромосомная линия этой зерновой культуры. Она была получена путем удвоения числа хромосом после гибридизации 28-хромосомной пшеницы с 14-хромосомной рожью.

Многообразие полиплоидов

В природе они отбираются под влиянием внешних условий, а не благодаря деятельности человека. Их возникновение — один из важнейших эволюционных механизмов. В наше время множество полиплоидов представлено в мировой флоре (более половины всех видов растений). Среди них многие из наиболее важных сельскохозяйственных культур — не только пшеница, но и хлопчатник, банан, картофель и подсолнечник. К этому перечню можно добавить большинство красивых садовых цветов — хризантемы, анютины глазки, георгины.

Теперь вы знаете, что такое полиплоидия. Ее роль в сельском хозяйстве, как вы видите, очень велика.

Полиплоидия. Решение задач с полиплоидией

Что такое полиплоидия

Полиплоидия - мутация, приводящая к кратному увеличению числа наборов хромосом. Мы знаем, что гены локализованы в хромосомах. Если хромосомы имеют одинаковый набор генов и имеют одинаковую форму и размер, то они называются гомологичные хромосомы. В норме большинство организмов имеет двойной набор хромосом, то есть этот набор состоит из пар гомологичных хромосом. Например, в записи генотипа "Aa" каждый символ обозначает аллель гена в паре гомологичных хромосом. Число наборов хромосом в клетках каждого организма называют - плоидность, а организм с двойным набором хромосом - диплоидом. В норме в процессе мейоза в гамету может попасть только одна хромосома из каждой пары гомологичных хромосом. Например для организма с генотипом "Aa" мы получаем гаметы "A" and "a", то есть гаметы имеют только один гаплоидный набор хромосом. В дальнейшем, при слиянии гамет с гаплоидным набором хромосом, вновь образуется диплоидный организм. У него два набора хромосом, из которых один поступил от материнского организма, а другой от отцовского. Но процесс клеточного деления может быть нарушен, что может привести к изменению числа наборов хромосом. И в результате этого мы можем получить полиплоидов - организмов с увеличенным набором хромосом.

Полиплоидия у животных

В животном мире полиплоиды встречаются у видов, утративших нормальный половой процесс и видов, у которых яйцеклетки развиваются без оплодотворения (Партеногенез), например у нематод, аскарид, пиявок, у некоторых видов насекомых, земноводных и рыб. У многих млекопитающих полиплоидные клетки встречаются в отдельных органах (печень, и др.), но пример полной полиплоидии известен лишь один это тетраплоид - южно-американская крыса вискаша (the South American red viscacha rat)(Tympanoctomys barrerae) (вид, родственный морским свинкам и шиншиллам). Эти животные принадлежат семейству Octodontidae, отряда грызунов. Живут в Аргентине на солончаках и крайне редки. Основная причина того, что полиплоидия у животных встре­чается редко, заключается в том, что этот тип мутаций на­рушает функционирование хромосомного механизма определения пола: если количество X - хромосом пре­вышает две, у организмов отмечаются нарушения в разви­тии и они или погибают, или неспособны к размножению. В геноме этой крысы учетверены только аутосомы, а число X - хромосом - обычное для диплоидных организмов. Исследователи полагают, что именно благодаря этому красные вискаши сохранили жизнеспособность и плодовитость.

Полиплоидия у растений

У большинства растений этого ограничения не существует, поскольку у них нет X - хромосом и возможно самоопыление. Поэтому полиплоидия гораздо чаще встречается среди растений, нежели среди животных. Существуют природные и искусственно полученные полиплоиды. Например, мягкая пшеница - природный полиплоид, состоящий из шести гаплоидных наборов хромосом родственных видов злаков. Полиплоиды получают в результате воздействия на растения температуры, ионизирующей радиации, химических веществ (колхицин), которые разрушают веретено деления клетки. Многие культурные растения полиплоидны, то есть содержат более двух наборов хромосом. Среди полиплоидов оказываются многие основные продовольственные культуры: пшеница, картофель, овес. В растениеводстве известно более 500 полиплоидов (рожь, сахарная свекла, виноград, гречиха, мята, редис, лук и др.). Некоторые полиплоиды обладают большой устойчивостью к действию неблагоприятных факторов и хорошей урожайностью. Большое многообразие полиплоидов наблюдается в цветоводстве: если одна исходная форма в гаплоидном наборе имела 9 хромосом, то культивируемые растения этого вида могут иметь 18, 36, 54 и больше хромосом. Различают автополиплоидов и аллополиплоидов.

Автополиплоидия и Аллоплоидия

Автополиплоидия - наследственное изменение, кратное увеличение числа наборов хромосом в клетках организма одного и того же биологического вида. На основе искусственной автополиплоидии синтезированы новые формы и сорта ржи, гречихи, сахарной свёклы и других растений.

Аллоплоидия - кратное увеличение количества хромосом у гибридных организмов. Возникает при скрещивании растений, которые относятся к разным видам или родам. Гибриды первого поколения, как правило, бесплодны. Причина бесплодия заключается в нарушении коньюгации хромосом в мейозе. Увеличение числа наборов хромосом у таких гибридов приводит к восстановлению плодовитости.

Триплоиды

Триплоиды имеют три набора хромосом. Известны такие триплоиды как банан, арбуз, имбирь, цитрусовые. Большинство таких растений стерильны и только небольшая часть из них фертильны. Используя генетический калькулятор можно посмотреть какие типы гамет даст триплоид. Для этого нужно каждую группу хромосом (генов) в записи генотипа родителей заключить в символы амперсанда, например так: &AAA&. Такая запись учитывает все возможные комбинации, в том числе и те, которые являются результатом нерасхождения хромосом. А так как нерасхождение хромосом возникает достаточно редко, то соотношение гамет в данном случае не будет соответствовать действительности, также как и соотношение по генотипам или фенотипам в таком скрещивании. Выбрав пункт "Гаметы генотипа 1" для результатов скрещивания вы увидите комбинации гамет, которые могут образоваться. Как вы можете видеть гаметы могут быть гаплоидными, диплоидными или иметь несбалансированное число хромосом. Гамет последнего типа формируется достаточно много, что и определяет стерильность большинства организмов с нечетным набором хромосом, в данном случае триплоидов.

Однако мы должны сказать, что существуют растения для которых триплоидия это норма, например это сосна(57 хромосом), свекла(27), яблоня(51). Такие растения дают нормальные гаметы. Для того, чтобы отобрать только нормальные гаметы в конец записи необходимо добавить символы процентов вот так - &AAA%%&. Как программа определяет какие гаметы - нормальные? В случае четного числа наборов хромосом плоидность просто делится на 2. В случае нечетного числа плоидность также делится на 2, но затем к полученному результату прибавляют 0.5 и отнимают 0.5 и таким образом мы получим два значения. Например для триплоидов нормальные гаметы это гаплоиды (A) и диплоиды (AA) (3/2 = 1.5; 1.5 + 0.5 = 2(AA); 1.5 - 0.5 = 1(A)). Если нужно отобрать только гаметы с определенной плоидностью, то для этого ты должен между знаками процентов написать нужное значение. Например - &AAA%1%& если нужны только гаплоидные гаметы или &AAA%2%& - если нужны только диплоидные гаметы. Соотношение нормальных гамет полностью достоверно и если для обоих родительских генотипов в скрещивании вы используете отбор нормальных гамет, то и соотношения по генотипам и фенотипам будет достоверным.

Полиплоиды могут быть гомозиготными и гетерозиготными. Гомозиготные триплоиды это "AAA" и "aaa". А гетерозиготные это "Aaa" and "AAa". Есть одно важное правило для решения генетических задач с полиплоидами. В каждой группе полиплоидных генов ты можешь использовать только по одному типу доминантного и рецессивного аллелей, например вот так: &AAa%%&&Bbb%%& а такая запись как - &Aab%%& будет неверной. В отличие от полигенного наследования - для полиплоидии порядок написания доминантных и рецессивных аллелей неважен. Поэтому написав генотипы таким образом &aAa%%& или &aaA%%& ты все равно получишь верные результаты. Выбрав пункт "Гаметы генотипа 1" для результатов скрещивания вы увидите комбинации гамет, которые будут давать триплоиды "&AAA%%&", "&aaa%%&" и "&Aaa%%&", "&AAa%%&". Используя генетический калькулятор вы также можете увидеть какие соотношения по фенотипам могут дать эти триплоиды в скрещиваниях.

Тетраплоиды, гексаплоиды и другие полиплоиды

В природе можно также встретить растения с пятью гаплоидными наборами хромосом - пентаплоиды. Например Kenai Birch (Betula papyrifera) - это пентаплоид. Как и триплоиды, пентаплоиды это полиплоиды с нечетным набором хромосом. Для пентаплоидов нормальные гаметы это триплоиды (AAA) и диплоиды (AA) (5/2 = 2.5; 2.5 + 0.5 = 3(AAA); 2.5 - 0.5 = 2(AA)). Используя генетический калькулятор вы также можете увидеть какие соотношения по гаметам и фенотипам могут дать пентаплоиды.

Но лучше изучены полиплоиды с четным набором хромосом - тетраплоиды (четыре набора хромосом) и гексаплоиды (шесть наборов хромосом). Известны такие тетраплоиды как твердая пшеница, картофель, капуста, табак, лук-порей, арахис, хлопок, яблоня, пеларгониум. Для тетраплоидов нормальные гаметы это диплоиды (AA) (4/2 = 2(AA)). А варианты родительских генотипов, которые вы можете использовать в генетическом калькуляторе - такие &AAAA%%&, &AAAa%%&, &AAaa%%&, &Aaaa%%&, &aaaa%%&.

Из гексаплоидов известны такие как тритикале, овес, хризантема и киви. Для гексаплоидовв нормальные гаметы это триплоиды (AAA) (6/2 = 3(AAA)). А варианты родительских генотипов, которые вы можете использовать в генетическом калькуляторе - такие &AAAAAA%%&, &AAAAAa%%&, &AAAAaa%%&, &AAAaaa%%&, &AAaaaa%%&, &Aaaaaa%%&, &aaaaaa%%&.

Также известны октаплоиды (восемь наборов хромосом) такие как анютины глазки, сахарный тростник, георгины и клубника (нормальные гаметы - тетраплоиды (8/2 = 4(AAAA)). Декаплоиды (десять наборов хромосом), например некоторые сорта клубники (нормальные гаметы - пентаплоиды (10/2 = 5(AAAAA)). Додекаплоиды (двенадцать наборов хромосом), например растение Celosia argentea (нормальные гаметы - гексаплоиды (12/2 = 6(AAAAAA)).

Пло́идность - (от греч. -ploos - кратный и eidos - вид) - число наборов хромосом, находящихся в ядрах клеток организма.

Виды плоидности и терминология

  • Гаплоидные клетки - содержат одинарный набор непарных хромосом (половые клетки, прокариоты).
  • Диплоидные клетки - содержат парное количество хромосом. Большая часть организмов, размножающихся половым путём, диплоидны, т. е. содержат в соматических клетках тела по одному набору хромосом от каждой из гамет (гаплоидных половых клеток).
  • Полиплоидные клетки - содержат более чем две пары хромосом (до двенадцати пар). В зависимости от того, сколько раз в ядре клетки повторяется гаплоидный набор, их соответственно называют три-, тетра-, гексаплоидными и т. д. Полиплоидия возникает вследствие нарушения хода митоза или мейоза (значительно реже) под воздействием мутагенов : при разрушении веретена деления удвоившиеся хромосомы не расходятся, а остаются внутри неразделившейся клетки (так возникают гаметы с двукратным числом хромосом - 2n). При слиянии такой гаметы с нормальной (n) потомок будет иметь тройной набор хромосом и т.д. Полиплоидия имеет две разновидности:
    • Автополиплоидия - результат кратного увеличения гаплоидного набора хромосом одного вида.
    • Аллополиплоидия - результат объединения наборов хромосом разных видов после образования межвидовых гибридов.
  • Анеуплоидные клетки - непропорциональное (не кратное гаплоидному) удвоение или утрата отдельных хромосом. В зависимости от того, произошло уменьшение или увеличение хромосом, используют соответственно приставки гипо- и гипер-. Например, гипердиплоиды - трисомики (2n +1) и тетрасомики (2n + 2), гиподиплоиды - моносомики (2n - 1) и нуллисомики (2n - 2). Анеуплоидия как правило появляется из-за влияния мутагенов .

Иногда термин "плоидность" применяют не только к эукариотам , но и в отношении безядерных прокариотов , которые как правило гаплоидны, однако иногда встречаются диплоидные и полиплоидные бактерии.

Полиплоидию не следует путать с увеличением количества ядер в клетке и увеличением числа молекул ДНК (политенизацией) в хромососоме.

Гаплоидная и диплоидная фазы в жизненном цикле

У раздельнополых организмов в жизненном цикле происходит как правило нормальное чередование гаплоидной и диплоидной фаз. При мейозе образуются гаплоидные клетки в результате разделения диплоидной (у некоторых растений и грибов затем может происходить размножение путём митоза с образованием гаплоидного многоклеточного тела или нескольких поколений гаплоидных клеток-потомков). В результате полового процесса хромосомы двух гаплоидных клеток объединяются в одной диплоидной (зиготе), после чего могут размножаться при помощи митоза (у растений и животных) с образованием диплоидного многоклеточного тела или диплоидных клеток-потомков.

Полиплоидия у растений

Термин полиплоидия был предложен в 1916 году немецким ученым Винклером, изучавшим образцы аномальных (химерных) тканей у паслена.

Естественная полиплоидность в природе распространена достаточно широко. До 75% арктический флоры – полиплоиды, так же велик процент полиплоидов в пустынных и высокогорных регионах, где выживают растения, устойчивые к экстремальным условиям обитания.

Человеком полиплоидия используется издавна. Сначала просто размножали самые крупные экземпляры, дающие много зерна или же хорошие плоды. С развитием генетики выяснилось, что такие гиганты – отобранные природные полиплоиды. В настоящее время на основе искусственной автополиплоидии синтезированы высокоурожайные формы и сорта пшеницы, ржи, гречихи, кукурузы, картофеля, хлопчатника, сахарной свеклы, сахарного тростника и других культурных растений. Растения-полиплоиды как правило характеризуются более крупными размерами, повышенным содержанием ряда веществ, устойчивостью к неблагоприятным факторам внешней среды, отличными от исходных форм сроками цветения и плодоношения. Искусственная полиплоидия вызывается ядами, разрушающими веретено деления, такими как алкалоид колхицин .

Аллополиплоидия (межвидовое скрещивание) обычно возникает от удвоения хромосом гибрида двух видов, что приводит к его плодовитости (амфиплоидия). Пример природной аллополиплоидии – алыча, гибрид терна и дикой сливы, полученный тысячелетия назад в результате естественной гибридизации. Искусственный гибрид получен в 1928 году русским цитогенетиком Карпеченко, который скрестил редьку с капустой. Полученый "амфидиплоид" получил научное название Paphanobrassica. У этого растения листья были как у редьки, а корни напоминали капустные. Хотя экономической ценностью полученный гибрид не обладает, зато позиционируется эволюционистами в качестве доказательства реальности биологической эволюции. В этом случае стоит отметить, что Paphanobrassica имела признаки обеих видов-прародителей, но не обладало принципиально новыми признаками, которые бы указывали на возможность прогрессивных макроэволюционных изменений.

Полиплоидия у животных

В животном мире полиплоиды встречаются среди нематод, аскарид, пиявок, земноводных. У многих млекопитающих полиплоидные клетки встречаются в отдельных органах (печень, и др.), но пример полной полиплоидии известен лишь один – южноамериканский грызун Tympanoctomys barrerae (вид, родственный морским свинкам и шиншиллам).

Нарушения плоидности у человека

У человека большая часть клеток диплоидны. Гаплоидны только зрелые половые клетки (гаметы). Другие варианты плоидности - несут лишь отрицательное воздействие.

Примеры анеуплоидии у человека: синдром Дауна (21-я хромосома представлена тремя копиями), синдром Кляйнфельтера - избыточная X хромосома (XXY), синдром Тернера - отсутствие одной из половых хромосом (X0). Описаны также примеры утроения X хромосомы и некоторые другие аномалии.

Примерами полиплоидии являются абортивные триплоидные зародыши и триплоидные новорождённые (срок их жизни при этом не превышает нескольких дней), а также диплоидно-триплоидные мозаики.

Полиплодия в теории креационизма

Казалось бы, примеры с удачными гибридами неоспоримо доказывают, что увеличение числа хромосом - путь к эволюционному прогрессу. Однако наблюдение полиплоидии в природе приводит к интересным, а иногда - и к противоположным выводам. В частности Кент Ховант в своих лекциях (1999 г.) любил приводить факты о количестве хромосом в соматических клетках разных организмов. Если бы количество хромосом имело смысл в эволюции, тогда по правилу элементарной логики, чем больше хромосом, тем дальше живое существо взобралось по древу эволюции. Но это не так.

Таким образом полиплоидия ещё ждёт своего научного осмысления.

Источники информации

  • Большая советская энциклопедия, статьи «Автополиплоидия», «Полиплоидия».
  • Мортон Дженкинс «101 ключевая идея: Эволюция», -М, ФАИР-ПРЕСС, 2001, стр.11-12,15-16 ISBN 5-8183-0354-3
  • Фогель Ф., Мотульски А. "Генетика человека". В 3-х т., Москва, Мир, 1989.