Домой / Анализ мочи / Строение почки и нефрона. Нефрон – структурно-функциональная единица почки Капсулы нефронов находятся в

Строение почки и нефрона. Нефрон – структурно-функциональная единица почки Капсулы нефронов находятся в

19576 0

Канальцевую часть нефрона принято делить на четыре отдела:

1) главный (проксимальный);

2) тонкий сегмент петли Генле;

3) дистальный;

4) собирательные трубки .

Главный (проксимальный) отдел состоит из извилистой и прямой частей. Клетки извитой части имеют более сложное строение, чем клетки других отделов нефрона. Это высокие (до 8 мкм) клетки со щеточной каемкой, внутриклеточными мембранами, большим числом правильно ориентированных митохондрий, хорошо развитыми пластинчатым комплексом и эндоплазматической сетью, лизосомами и другими ультраструктурами (рис. 1). В их цитоплазме много аминокислот, основных и кислых белков, полисахаридов и активных SH-групп, высокоактивных дегидрогеназ, диафораз, гидролаз [Серов В. В., Уфимцева А. Г., 1977; Jakobsen N., Jorgensen F. 1975].

Рис. 1. Схема ультраструктуры клеток канальцев различных отделов нефрона . 1 - клетка извитой части главного отдела; 2 - клетка прямой части главного отдела; 3 - клетка тонкого сегмента петли Генле; 4 - клетка прямой (восходящей) части дистального отдела; 5 - клетка извитой части дистального отдела; 6 - "темная" клетка связующего отдела и собирательной трубки; 7 - «светлая» клетка связующего отдела и собирательной трубки.

Клетки прямой (нисходящей) части главного отдела в основном имеют то же строение, что и клетки извитой части, но пальцевидные выросты щеточной каемки более грубые и короткие, внутриклеточных мембран и митохондрий меньше, они не так строго ориентированы, значительно меньше цитоплазматических гранул.

Щеточная каемка состоит из многочисленных пальцевидных выростов цитоплазмы, покрытых клеточной мембраной и гликокаликсом. Их число на поверхности клетки достигает 6500, что увеличивает рабочую площадь каждой клетки в 40 раз . Эти сведения дают представление о поверхности, на которой совершается обмен в проксимальном отделе канальцев. В щеточной каемке доказана активность щелочной фосфатазы, АТФ-азы, 5-нуклеотидазы, аминопептидазы и ряда других ферментов . Мембрана щеточной каемки содержит натрийзависимую транспортную систему. Считают, что гликокаликс, покрывающий микроворсинки щеточной каемки, проницаем для малых молекул. Большие молекулы поступают в каналец с помощью пиноцитоза, который осуществляется благодаря кратерообразным углублениям в щеточной каемке .

Внутриклеточные мембраны образованы не только изгибами БМ клетки, но и латеральными мембранами соседних клеток, которые как бы перекрывают друг друга. Внутриклеточные мембраны являются по существу и межклеточными, что служит активному транспорту жидкости. При этом главное значение в транспорте придается базальному лабиринту, образованному выпячиваниями БМ внутрь клетки; он рассматривается как «единое диффузионное пространство» .

Многочисленные митохондрии расположены в базальной части между внутриклеточными мембранами, что и создает впечатление их правильной ориентации. Каждая митохондрия, таким образом, заключена в камере, образованной складками внутри- и межклеточных мембран. Это позволяет продуктам энзиматических процессов, развивающихся в митохондриях, легко выходить за пределы клетки. Энергия, вырабатываемая в митохондриях, служит как транспорту вещества, так и секреции, осуществляемой с помощью гранулярной эндоплазматической сети и пластинчатого комплекса, который претерпевает циклические изменения в различные фазы диуреза.

Ультраструктура и ферментохимия клеток канальцев главного отдела объясняют его сложную и дифференцированную функцию. Щеточная каемка, как и лабиринт внутриклеточных мембран, является своеобразным приспособлением для колоссальной по объему функции реабсорбции, выполняемой этими клетками. Ферментная транспортная система щеточной каемки, зависимая от натрия, обеспечивает реабсорбцию глюкозы, аминокислот, фосфатов [Наточин Ю. В., 1974; Kinne R., 1976]. С внутриклеточными мембранами, особенно с базальным лабиринтом, связывают реабсорбцию воды, глюкозы, аминокислот, фосфатов и ряда других веществ , которую выполняет натрийнезависимая транспортная система мембран лабиринта.

Особый интерес представляет вопрос о канальцевой реабсорбции белка. Считают доказанным, что весь фильтрирующийся в клубочках белок реабсорбируется в проксимальном отделе канальцев, чем объясняется его отсутствие в моче здорового человека. Это положение основывается на многих исследованиях, выполненных, в частности, с помощью электронного микроскопа. Так, транспорт белка в клетке проксимального канальца изучен в опытах с микроинъекцией меченного ¹³¹I альбумина непосредственно в каналец крысы с последующей электронно-микроскопической радиографией этого канальца .

Альбумин находят прежде всего в инвагинатах мембраны щеточной каемки, затем в пиноцитозных пузырьках, которые сливаются в вакуоли. Белок с вакуолей появляется затем в лизосомах и пластинчатом комплексе (рис. 2) и расщепляется гидролитическими ферментами . Вероятнее всего, «основные усилия» высокой дегидрогеназной, диафоразной и гидролазной активности в проксимальном отделе канальцев направлены на реабсорбцию белка.

Рис. 2. Схема реабсорбции белка клеткой канальцев главного отдела .

I - микропиноцитоз у основания щеточной каемки; Mvb -вакуоли, содержащие белок ферритин;

II - заполненные ферритином вакуоли (а) перемещаются к базальной части клетки; б - лизосома; в - слияние лизосомы с вакуолью; г - лизосомы с инкорпорированным белком; АГ - пластинчатый комплекс с цистернами, содержащими КФ (окрашены в черный цвет);

III - выделение через БМ низкомолекулярных фрагментов реабсорбированного белка, образовавшихся после «переваривания» в лизосомах (показано двойными стрелками).

В связи с этими данными становятся понятными механизмы "повреждения" канальцев главного отдела. При НС любого генеза, протеинурических состояниях изменения эпителия канальцев проксимального отдела в виде белковой дистрофии (гиалиново-капельной, вакуольной) отражают резорбционную недостаточность канальцев в условиях повышенной порозности гломерулярного фильтра для белка [Давыдовский И. В., 1958; Серов В. В., 1968]. Нет необходимости видеть в изменениях канальцев при НС первично-дистрофические процессы.

В равной мере нельзя рассматривать и протеинурию как результат только повышенной порозности гломерулярного фильтра. Протеинурия при нефрозах отражает как первичное повреждение фильтра почки, так и вторичное истощение (блокаду) ферментных систем канальцев, осуществляющих реабсорбцию белка.

При ряде инфекций и интоксикаций блокада ферментных систем клеток канальцев главного отдела может наступить остро, поскольку эти канальцы первыми подвергаются действию токсинов и ядов при их элиминации почками. Активация гидролаз лизосомного аппарата клетки завершает в ряде случаев дистрофический процесс развитием некроза клетки (острый нефроз). В свете приведенных данных становится понятной патология «выпадения» ферментов канальцев почек наследственного порядка (так называемые наследственные канальцевые ферментопатии). Определенная роль в повреждении канальцев (тубулолизис) отводится антителам, реагирующим с антигеном тубулярной базальной мембраны и щеточной каемки.

Клетки тонкого сегмента петли Генле характеризуются той особенностью, что внутриклеточные мембраны и пластинки пересекают тело клетки на всю ее высоту, образуя в цитоплазме щели шириной до 7 нм . Создается впечатление, что цитоплазма состоит из отдельных сегментов, причем часть сегментов одной клетки как бы вклинивается между сегментами соседней клетки. Ферментохимия тонкого сегмента отражает функциональную особенность этого отдела нефрона, который как дополнительное приспособление уменьшает до минимума фильтрационный заряд воды и обеспечивает ее «пассивную» резорбцию [Уфимцева А. Г., 1963].

Соподчиненная работа тонкого сегмента петли Генле, канальцев прямой части дистального отдела, собирательных трубок и прямых сосудов пирамид обеспечивает осмотическое концентрирование мочи на основе противоточного умножителя . Новые представления о пространственной организации противоточно-множительной системы (рис. 3) убеждают в том, что концентрирующая деятельность почки обеспечивается не только структурно-функциональной специализацией различных отделов нефрона, но и высокоспециализированным взаиморасположением канальцевых структур и сосудов почки [Перов Ю. Л., 1975; Kriz W., Lever А., 1969].

Рис. 3. Схема расположения структур противоточно-множительной системы в мозговой веществе почки . 1 - артериальный прямой сосуд; 2 - венозный прямой сосуд; 3 - тонкий сегмент петли Генле; 4 - прямая часть дистального отдела; СТ - собирательные трубки; К - капилляры.

Дистальный отдел канальцев состоит из прямой (восходящей) и извитой частей. Клетки дистального отдела ультраструктурно напоминают клетки проксимального отдела. Они богаты сигарообразными митохондриями, заполняющими пространства между внутриклеточными мембранами, а также цитоплазматическими вакуолями и гранулами вокруг ядра, расположенного апикально, но лишены щеточной каемки. Эпителий дистального отдела богат аминокислотами, основными и кислыми белками, РНК, полисахаридами и реактивными SH-группами; для него характерна высокая активность гидролитических, гликолитических ферментов и ферментов цикла Кребса.

Сложность устройства клеток дистальных канальцев, обилие митохондрий, внутриклеточных мембран и пластического материала, высокая ферментативная активность свидетельствуют о сложности их функции - факультативной реабсорбции, направленной на поддержание постоянства физико-химических условий внутренней среды. Факультативная реабсорбция регулируется в основном гормонами задней доли гипофиза, надпочечников и ЮГА почки.

Местом приложения действия антидиуретического гормона гипофиза (АДГ), в почке, «гистохимическим плацдармом» этой регуляции служит система гиалуроновая кислота - гиалуронидаза, заложенная в пирамидах, главным образом в их сосочках. Альдостерон, по некоторым данным, и кортизон влияют на уровень дистальной реабсорбции прямым включением в ферментную систему клетки, обеспечивающую перенос ионов натрия из просвета канальца в интерстиции почки. Особое значение в этом процессе принадлежит эпителию прямой части дистального отдела, причем дистальный эффект действия альдостерона опосредован секрецией ренина, закрепленной за клетками ЮГА. Ангиотензин, образующийся под действием ренина, не только стимулирует секрецию альдостерона, но и участвует в дистальной реабсорбции натрия.

В извитой части дистального отдела канальца, там, где он подходит к полюсу сосудистого клубочка, различают macula densa . Эпителиальные клетки в этой части становятся цилиндрическими, их ядра - гиперхромными; они располагаются полисадообразно, причем непрерывной базальной мембраны здесь нет. Клетки macula densa имеют тесные контакты с гранулированными эпителиоидными клетками и lacis-клетками ЮГА, что обеспечивает влияние химического состава мочи дистального канальца на гломерулярный кровоток и, наоборот гормональные влияния ЮГА на macula densa.

Со структурно-функциональной особенностью канальцев дистального отдела, их повышенной чувствительностью к кислородному голоданию связано до некоторой степени их избирательное поражение при острых гемодинамических повреждениях почек, в патогенезе которых основную роль играют глубокие нарушения почечного кровообращения с развитием аноксии тубулярного аппарата. В условиях острой аноксии клетки дистальных канальцев подвергаются воздействию содержащей токсические продукты кислой мочи, что ведет к их поражению вплоть до некроза. При хронической аноксии клетки дистального канальца чаще, чем проксимального, подвергаются атрофии.

Собирательные трубки , выстланные кубическим, а в дистальных отделах цилиндрическим эпителием (светлые и темные клетки) с хорошо развитым базальным лабиринтом, высокопроникаемы для воды. С темными клетками связывают секрецию ионов водорода, в них обнаружена высокая активность карбоангидразы [Зуфаров К. А. и др., 1974]. Пассивный транспорт воды в собирательных трубках обеспечивается особенностями и функции противоточно-множительной системы .

Заканчивая описание гистофизиологии нефрона, следует остановиться на его структурно-функциональном различии в разных отделах почки. На этом основании выделяют кортикальные и юкстамедуллярные нефроны, различающиеся строением клубочков и канальцев, а также своеобразием функции; различно и кровоснабжение этих нефронов.

Клиническая нефрология

под ред. Е.М. Тареева

Структура и функция

Почечное тельце

Схема строения почечного тельца

Клубочек

Клубочек представляет собой группу сильно фенестрированных (окончатых) капилляров, получающих кровоснабжение от афферентной артериолы . Гидростатическое давление крови создаёт движущую силу для фильтрации жидкости и растворённых веществ в просвет капсулы Боумена-Шумлянского. Непрофильтровавшаяся часть крови из клубочков поступает в эфферентную артериолу. Эфферентная артериола поверхностно расположенных клубочков распадается на вторичную сеть капилляров, оплетающих извитые канальцы почек, эфферентные артериолы от глубоко расположенных (юкстамедуллярных) нефронов продолжаются в нисходящие прямые сосуды (vasa recta), опускающиеся в мозговое вещество почек. Вещества, реабсорбированные в канальцах, в дальнейшем поступают в эти капиллярные сосуды.

Капсула Боумена-Шумлянского

Капсула Боумена-Шумлянского окружает клубочек и состоит из висцерального (внутреннего) и париетального (внешнего) листков. Внешний листок представляет собой обычный однослойный плоский эпителий. Внутренний листок составлен из подоцитов, которые лежат на базальной мембране эндотелия капилляров, и ножки которых покрывают поверхность капилляров клубочка. Ножки соседних подоцитов образуют на поверхности капилляра интердигиталии. Промежутки между клетками в этих интердигиталиях и образуют, собственно, щели фильтра, затянутые мембраной. Размер этих фильтрационных пор ограничивает перенос крупных молекул и клеточных элементов крови.

Между внутренним листком капсулы и внешним, представленным простым, непроницаемым, плоским эпителием, лежит пространство, в которое поступает жидкость, профильтровавшаяся через фильтр, который сформирован мембраной щелей в интердигиталиях, базальной пластинкой капилляров и гликокаликсом, секретируемым подоцитами.

Нормальная скорость клубочковой фильтрации (СКФ) составляет 180-200 литров в сутки, что в 15-20 раз превышает объём циркулирующей крови - иными словами, вся жидкость крови за сутки успевает профлильтроваться приблизительно двадцать раз. Измерение СКФ является важной диагностической процедурой, её снижение может быть показателем почечной недостаточности.

Небольшие молекулы - такие, как вода, ионы Na + , Cl - , аминокислоты, глюкоза, мочевина, одинаково свободно проходят через клубочковый фильтр, так же проходят через него белки массой до 30 Кд, хотя, поскольку белки в растворе обычно несут отрицательный заряд, для них определённое препятствие составляет отрицательно заряженный гликокаликс. Для клеток и более крупных белков клубочковый ультрафильтр представляет непреодолимое препятствие. В результате, в пространство Шумлянского-Боумена, и далее в проксимальный извитой каналец, поступает жидкость, по составу отличающаяся от плазмы крови только отсутствием крупных белковых молекул.

Почечные канальцы

Проксимальный каналец

Микрофотография нефрона
1 - Гломерула
2 - Проксимальный каналец
3 - Дистальный каналец

Наиболее длинная и широкая часть нефрона, проводящая фильтрат из капсулы Боумена-Шумлянского в петлю Генле.

Строение проксимального канальца

Характерной чертой проксимального канальца является наличие так называемой «щеточной каймы» - одного слоя эпителиальных клеток с микроворсинками. Микроворсинки располагаются на люминальной стороне клеток и значительно увеличивают их поверхность, усиливая тем самым их резобтивную функцию.

Наружная сторона эпителиальных клеток примыкает к базальной мембране, впячивания которой образуют базальный лабиринт.

Цитоплазма клеток проксимального канальца насыщена митохондриями, которые в большей степени находятся на базальной стороне клеток, тем самым обеспечивая клетки энергией, необходимой для активного транспорта веществ из проксимального канальца.

Транспортные процессы
Реабсорбция
Na + : трансклеточно (Na + / K + -АТФаза , совместно с глюкозой - симпорт ;
Na + /Н + -обмен - антипорт), межклеточно
Cl - , K + , Ca 2+ , Mg 2+ : межклеточно
НСО 3 - : Н + + НСО 3 - = СО 2 (диффузия) + Н 2 О
Вода: осмос
Фосфат (регуляция ПТГ), глюкоза , аминокислоты , мочевые кислоты (симпорт с Na +)
Пептиды : расщепление до аминокислот
Белки: эндоцитоз
Мочевина : диффузия
Секреция
Н + : обмен Na + /H + , H + -АТФаза
NH 3 , NH 4 +
Органические кислоты и основания

Петля Генле

Часть нефрона, которая соединяет проксимальный и дистальный канальцы. Петля имеет шпилечный изгиб в мозговом слое почки. Главной функцией петли Генле является реабсорбция воды и ионов в обмен на мочевину по противоточному механизму в мозговом слое почки. Петля названа в честь Фридриха Густава Якоба Генле , немецкого патологоанатома.

Нисходящее колено петли Генле
Восходящее колено петли Генле
Транспортные процессы

Дистальный извитой каналец

Транспортные процессы

Собирательные трубки

Юкстагломерулярный аппарат

Расположен в околоклубочковой зоне между приносящей и выносящей артериолами и состоит из трех основных частей.

Нефрон – функциональная почечная единица, где происходит образование мочи. В состав нефрона входят:

1) почечное тельце (двустенная капсула клубочка, внутри нее находится клубочек капилляров);

2) проксимальный извиты каналец (внутри него находится большое количество ворсинок);

3) петля Генли (нисходящая и восходящая части), нисходящая часть тонкая, опускается глубоко в мозговое вещество, где каналец изгибается на 180 и идет в корковое вещество почки, образуя восходящую часть петли нефрона. Восходящая часть включает тонкую и толстую части. Она поднимается до уровня клубочка своего же нефрона, где переходит в следующий отдел;

4) дистальный извитый каналец. Этот отдел канальца соприкасается с клубочком между приносящей и выносящей артериолами;

5) конечный отдел нефрона (короткий связывающий каналец, впадает в собирательную трубку);

6) собирательная трубка (проходит через мозговое вещество и открывается в полость почечной лоханки).

Различают следующие сегменты нефрона:

1) проксимальный (извитая часть проксимального канальца);

2) тонкий (нисходящая и тонкая восходящая части петли Генли);

3) дистальный (толстый восходящий отдел, дистальный извитый каналец и связывающий каналец).

В почке различают несколько типов нефронов :

1) поверхностные;

2) интракортикальные;

3) юкстамедуллярные.

Различия между ними заключаются в их локализации в почке.

Большое функциональное значение имеет зона почки, в которой расположен каналец. В корковом веществе находятся почечные клубочки, проксимальный и дистальные отделы канальцев, связывающие отделы. В наружной полоске мозгового вещества находятся нисходящие и толстые восходящие отделы петель нефрона, собирательные трубки. Во внутреннем мозговом веществе располагаются тонкие отделы петель нефронов и собирательные трубки. Расположение каждой из частей нефрона в почке определяет их участие в деятельности почки, в процессе мочеобразования.

Процесс мочеобразования состоит из трех звеньев:

1) клубочковой фильтрации, ультрафильтрации безбелковой жидкости из плазмы крови в капсулу почечного клубочка, в результате чего образуется первичная моча;

2) канальцевой реабсорбции – процесса обратного всасывания профильтровавшихся веществ и воды из первичной мочи;

3) секреции клетки. Клетки некоторых отделов канальца переносят из неклеточной жидкости в просвет нефрона (секретируют) ряд органических и неорганических веществ, выделяют в просвет канальца молекулы, синтезированные в клетке канальца.

Скорость процесса мочеобразования зависит от общего состояния организма, присутствия гормонов, эфферентных нервов или локально образующихся биологически активных веществ (тканевых гормонов).

Почки расположены ретроперитонеально по обе стороны позвоночного столба на уровне Th 12 –L 2 . Масса каждой почки взрослого мужчины - 125–170 г, взрослой женщины - 115–155 г, т.е. суммарно менее 0,5% общей массы тела.

Паренхима почки подразделяется на расположенное кнаружи (у выпуклой поверхности органа) корковое и находящееся под ним мозговое вещество . Рыхлая соединительная ткань образует строму органа (интерстиций).

Корковое вещество расположено под капсулой почки. Зернистый вид корковому веществу придают присутствующие здесь почечные тельца и извитые канальцы нефронов.

Мозговое вещество имеет радиально исчерченный вид, поскольку содержит параллельно идущие нисходящую и восходящую части петли нефронов, собирательные трубочки и собирательные протоки, прямые кровеносные сосуды (vasa recta ). В мозговом веществе различают наружную часть, расположенную непосредственно под корковым веществом, и внутреннюю часть, состоящую из вершин пирамид

Интерстиций представлен межклеточным матриксом, содержащим отростчатые фибробластоподобные клетки и тонкие ретикулиновые волокна, тесно связанные со стенками капилляров и почечных канальцев

Нефрон как морфо-функциональная единица почки.

У человека каждая почка состоит примерно из одного миллиона структурных единиц, называемых нефронами. Нефрон является структурной и функциональной единицей почки потому, что он осуществляет всю совокупность процессов, в результате которых образуется моча.

Рис.1. Мочевыделительная система. Слева : почки, мочеточники, мочевой пузырь, мочеиспускательный канал (уретра) Справа6 строение нефрона

Строение нефрона:

    Капсула Шумлянского-Боумена, внутри которой расположен клубочек капилляров – почечное (мальпигиево) тельце. Диаметр капсулы – 0,2 мм

    Проксимальный извитой каналец. Особенность его эпителиальных клеток: щеточная каемка – микроворсинки, обращенные в просвет канальца

    Петля Генле

    Дистальный извитой каналец. Его начальный отдел обязательно прикасается к клубочку между приносящей и выносящей артериолами

    Связующий каналец

    Собирательная трубка

Функционально различают 4 сегмента :

1. Гломерула;

2. Проксимальный – извитая и прямая части проксимального канальца;

3. Тонкий отдел петли – нисходящий и тонкая часть восходящего отдела петли;

4. Дистальный – толстая часть восходящего отдела петли, дистальный извитой каналец, связующий отдел.

Собирательные трубки в процессе эмбриогенеза развиваются самостоятельно, но функционируют вместе с дистальным сегментом.

Начинаясь в коре почки, собирательные трубки сливаются, образуют выводные протоки, которые проходят через мозговое вещество и открываются в полость почечной лоханки. Общая длина канальцев одного нефрона – 35-50 мм.

Типы нефронов

В различных сегментах канальцев нефрона имеются существенные отличия в зависимости от их локализации в той или иной зоне почки, величине клубочков (юкстамедулярные крупнее суперфициальных), глубине расположения клубочков и проксимальных канальцев, длине отдельных участков нефрона, особенно петель. Большое функциональное значение имеет зона почки, в которой расположен каналец, независимо от того, находится ли он в корковом или мозговом веществе.

В корковом слое находятся почечные клубочки, проксимальные и дистальные отделы канальцев, связующие отделы. В наружной полоске наружного мозгового вещества находятся тонкие нисходящие и толстые восходящие отделы петель нефронов, собирательные трубки. Во внутреннем слое мозгового вещества располагаются тонкие отделы петель нефрона и собирательные трубки.

Такое расположение частей нефрона в почке неслучайно. Это важно в осмотическом концентрировании мочи. В почке функционирует несколько различных типов нефронов:

1. с уперфициальные (поверхностные,

короткая петля);

2. и нтракортикальные (внутри коркового слоя);

3.Юкстамедуллярные (у границы коркового и мозгового слоя).

Одним из важных отличий, перечисленных трех типов нефронов, является длина петли Генле. Все поверхностные - корковые нефроны обладают короткой петлей, в результате чего колено петли располагается выше границы, между наружной и внутренней частями мозгового вещества. У всех юкстамедуллярных нефронов длинные петли проникают во внутренний отдел мозгового вещества, часто достигая верхушки сосочка. Интракортикальные нефроны могут иметь и короткую и длинную петлю.

ОСОБЕННОСТИ КРОВОСНАБЖЕНИЯ ПОЧКИ

Почечный кровоток не зависит от системного артериального давления в широком диапазоне его изменений. Это связано с миогенной регуляцией , обусловленной способностью гладкомышечных клетокvasafferensсокращаться в ответ на растяжение их кровью (при повышении артериального давления). В результате количество протекающей крови остается постоянным.

В одну минуту через сосуды обеих почек у человека проходит около 1200 мл крови, т.е. около 20-25% крови, выбрасываемой сердцем в аорту. Масса почек составляет 0,43% массы тела здорового человека, а получают они ¼ часть объема крови, выбрасываемой сердцем. Через сосуды коры почки протекает 91-93% крови, поступающей в почку, остальное ее количество снабжает мозговое вещество почки. Кровоток в коре почки в норме составляет 4-5 мл/мин на 1 г. ткани. Это наиболее высокий уровень органного кровотока. Особенность почечного кровотока состоит в том, что при изменении артериального давления (от 90 до 190 мм.рт.ст) кровоток почки остается постоянным. Это обусловлено высоким уровнем саморегуляции кровообращения в почке.

Короткие почечные артерии - отходят от брюшного отдела аорты и представляют собой крупный сосуд с относительно большим диаметром. После вхождения в ворота почек они делится на несколько междолевых артерий, которые проходят в мозговом веществе почки между пирамидами до пограничной зоны почек. Здесь от междольковых артерий отходят дуговые артерии. От дуговых артерий в направлении коркового вещества идут междольковые артерии, которые дают начало многочисленным приносящим клубочковым артериолам.

В почечный клубочек входит приносящая (афферентная) артериола, в нем она распадается на капилляры, образуя мальпегиев клубочек. При слиянии они образуют выносящую (эфферентную) артериолу, по которой кровь оттекает от клубочка. Эфферентная артериола, затем снова распадаются на капилляры, образуя густую сеть вокруг проксимальных и дистальных извитых канальцев.

Две сети капилляров – высокого и низкого давления .

В капиллярах высокого давления (70 мм рт.ст.) – в почечном клубочке – происходит фильтрация. Большое давление связано с тем, что:1) почечные артерии отходят непосредственно от брюшного отдела аорты; 2) их длина невелика; 3) диаметр приносящей артериолы в 2 раза больше, чем выносящей.

Таким образом, большая часть крови в почке дважды проходит через капилляры - вначале в клубочке, затем вокруг канальцев, это так называемая "чудесная сеть". Междольковые артерии образуют многочисленные аностомозы, которые играют компенсаторную роль. В образовании околоканальцевой капиллярной сети существенное значение имеет артериола Людвига, которая отходит от междольковой артерии, либо от приносящей клубочковой артериолы. Благодаря артериоле Людвига возможно экстрагломерулярное кровоснабжение канальцев в случае гибели почечных телец.

Артериальные капилляры, создающие околоканальцевую сеть, переходят в венозные. Последние образуют звездчатые венулы, расположенные под фиброзной капсулой - междольковые вены, впадающие в дуговые вены, которые сливаются и образуют почечную вену, которая впадает в нижнюю половую вену.

В почках различают 2-а круга кровообращения: большой корковый - 85-90% крови, малый юкстамедулярный - 10-15% крови. В физиологических условиях 85-90% крови циркулирует по большому (корковому) кругу почечного кровообращения, при патологии кровь движется по малому или укороченному пути.

Отличие кровоснабжения юкстамедулярного нефрона - диаметр приносящей артериолы примерно равен диаметру выносящей артериолы, эфферентная артериола не распадается на околоканальцевую капиллярную сеть, а образует прямые сосуды, которые спускаются в мозговое вещество. Прямые сосуды образуют петли на различных уровнях мозгового вещества, поворачивая обратно. Нисходящие и восходящие части этих петель образуют противоточную систему сосудов, называемых сосудистым пучком. Юкстамедулярный путь кровообращения является своеобразным "шунтом" (шунт Труэта), в котором большая часть крови поступает не в корковое, а в мозговое вещество почек. Это так называемая дренажная система почек.

20530 0

Особенности и специфика функций почек объясняются своеобразием специализации их структуры. Функциональная морфология почек изучается на разных структурных уровнях — от макромолекулярного и ультраструктурного до органного и системного. Так, гомеостатические функции почек и их нарушения имеют морфологический субстрат на всех уровнях структурной организации этого органа. Ниже рассматривается своеобразие тонкой структуры нефрона, строения сосудистой, нервной и гормональной систем почек, позволяющее понять особенности функций почек и их нарушения при важнейших почечных заболеваниях.

Нефрон, состоящий из сосудистого клубочка, его капсулы и почечных канальцев (рис. 1), имеет высокую структурно-функциональную специализацию. Эта специализация определяется гистологическими и физиологическими особенностями каждого составного элемента клубочковой и канальцевой части нефрона.

Рис. 1. Строение нефрона. 1 - сосудистый клубочек; 2 - главный (проксимальный) отдел канальцев; 3 - тонкий сегмент петли Генле; 4 - дистальный отдел канальцев; 5 - собирательные трубки.

В каждой почке содержится приблизительно 1,2-1,3 млн. клубочков . Сосудистый клубочек имеет около 50 капиллярных петель, между которыми найдены анастомозы , что позволяет клубочку функционировать как «диализирующая система». Стенка капилляра представляет собой клубочковый фильтр, состоящий из эпителия, эндотелия и располагающейся между ними базальной мембраны (БМ) (рис. 2).

Рис. 2. Гломерулярный фильтр. Схема строения стенки капилляра почечного клубочка . 1 - просвет капилляра; эндотелий; 3 - БМ; 4 - подоцит; 5 - малые отростки подоцита (педикулы).

Эпителий клубочка, или подоцит , состоит из крупного клеточного тела с ядром в его основе, митохондриями, пластинчатым комплексом, эндоплазматической сетью, фибриллярными структурами и другими включениями. Строение подоцитов и их взаимоотношения с капиллярами хорошо изучены в последнее время с помощью растрового электронного микрофона . Показано, что большие отростки подоцита отходят из перинуклеарной зоны; они напоминают «подушки», охватывающие значительную поверхность капилляра. Малые отростки, или педикулы, отходят от больших почти перпендикулярно, переплетаются между собой и закрывают все свободное от больших отростков пространство капилляра (рис. 3, 4). Педикулы тесно прилежат друг к другу, межпедикулярное пространство составляет 25-30 нм .

Рис. 3. Электронограмма фильтра

Рис. 4. Поверхность капиллярной петли клубочка покрыта телом подоцита и его отростками (педикулами), между которыми видны межпедикулярные щели . Сканирующий электронный микроскоп. Х6609.

Подоциты связаны между собой пучковыми структурами - peculiar junction» , образующимися из ининмолеммы. Фибриллярные структуры особенно отчетливо ни ряжены между малыми отростками подоцитов, где они обра¬тит так называемую щелевую диафрагму - slit diaphragma

Подоциты связаны между собой пучковыми структурами - "peculiar junction" , образующимися из плазмолеммы. Фибриллярные структуры особенно отчетливо выряжены между малыми отростками подоцитов, где они образуют так называемую щелевую диафрагму - slit diaphragma (см. рис. 3), которой отводится большая роль в гломерулярной фильтрации. Щелевая диафрагма, имея филаментарное строение (толщина 6 нм, длина 11 нм), образует своеобразную решетку, или систему пор фильтрации, диаметр которых у человека 5-12 нм . Снаружи щелевая диафрагма покрыта гликокаликсом, т. е. сиалопротеиновым слоем цитолеммы подоцита, внутри она граничит с lamina rara externa БМ капилляра (рис. 5).


Рис. 5. Схема взаимоотношений элементов гломерулярного фильтра. Подоциты (Р), содержащие миофиламенты (MF), окружены плазматической мембраной (РМ). Филаменты базальной мембраны (ВМ) образуют между малыми отростками подоцитов щелевую диафрагму (SM), покрытую снаружи гликокаликсом (GK) плазматической мембраны; те же филаменты ВМ связаны с эндотелиальными клетками (Еn), оставляя свободными лишь его поры (F) .

Функцию фильтрации осуществляет не только щелевая диафрагма, но и миофиламенты цитоплазмы подоцитов , с помощью которых происходит их сокращение. Так, «субмикроскопические насосы» перекачивают ультрафильтрат плазмы в полость капсулы клубочка. Той же функции транспорта первичной мочи служит и система микротрубочек подоцитов . С подоцитами связана не только функция фильтрации, но и продукция вещества БМ . В цистернах гранулярной эндоплазматической сети этих клеток находят материал, аналогичный веществу базальной мембраны, что подтверждается авторадиографической меткой .

Изменения подоцитов чаще всего бывают вторичными и обычно наблюдаются при протеинурии, нефротическом синдроме (НС). Они выражаются в гиперплазии фибриллярных структур клетки, исчезновении педикул, вакуолизации цитоплазмы и нарушений щелевой диафрагмы. Эти изменения связаны как с первичным повреждением базальной мембраны, так и с самой протеинурией [Серов В. В., Куприянова Л. А., 1972]. Инициальные и типичные изменения подоцитов в виде исчезновения их отростков характерны лишь для липоидного нефроза, который хорошо воспроизводится в эксперименте с помощью аминонуклеозида .

Эндотелиальные клетки капилляров клубочка имеют поры размером до 100-150 нм (см. рис. 2) и снабжены специальной диафрагмой . Поры занимают около 30% эндотелиальной выстилки, покрытой гликокаликсом. Поры рассматривают как основной путь ультрафильтрации, но допускают и трансэндотелиальный путь, минующий поры; в пользу этого допущения говорит высокая пиноцитозная активность гломерулярного эндотелия. Помимо ультрафильтрации, эндотелий гломерулярных капилляров участвует в образовании вещества БМ .

Изменения эндотелия капилляров клубочка разнообразны: набухание, вакуолизация, некробиоз, пролиферация и десквамация, однако преобладают деструктивно-пролиферативные изменения, столь характерные для гломерулонефрита (ГН).

Базальная мембрана клубочковых капилляров, в образовании которой участвуют не только подоциты и эндотелий , но и мезангиальные клетки , имеет толщину 250-400 нм и в электронном микроскопе выглядит трехслойной; центральный плотный слой (lamina densa) окружен более тонкими слоями с наружной (lamina rara externa) и внутренней (lamina rara interna) стороны (см. рис. 3). Собственно БМ служит lamina densa, состоящая из филаментов белка, подобного коллагену, гликопротеинов и липопротеинов ; наружный и внутренний слои, содержащие мукосубстанции, являются по существу гликокаликсом подоцитов и эндотелия . Филаменты lamina densa толщиной 1,2-2,5 нм входят в «подвижные» соединения с молекулами окружающих их веществ и образуют тиксотропный гель . Неудивительно, что вещество мембраны тратится на осуществление функции фильтрации; БМ полностью обновляет свою структуру в течение года .

С присутствием в плотной пластинке коллагеноподобных филаментов связана гипотеза о порах фильтрации в базальной мембране. Показано, что средний радиус пор мембраны равен 2,9±1 нм и определяется расстоянием между нормально расположенными и неизмененными филаментами коллагеноподобного белка . При падении гидростатического давления в капиллярах клубочков первоначальная «упаковка» коллагеноподобных филаментов в БМ изменяется, что ведет к увеличению размера пор фильтрации .

Предполагают, что при нормальном кровотоке поры базальной мембраны гломерулярного фильтра достаточно велики и могут пропускать молекулы альбумина, IgG, каталазы, но проникновение этих веществ ограничено высокой скоростью фильтрации. Фильтрация ограничена также дополнительным барьером гликопротеинов (гликокаликс) между мембраной и эндотелием, причем этот барьер в условиях нарушенной гломерулярной гемодинамики повреждается.

Для объяснения механизма протеинурии при повреждении базальной мембраны большое значение имели методы с применением маркеров, в которых учтен электрический заряд молекул .

Изменения БМ клубочка характеризуются ее утолщением, гомогенизацией, разрыхлением и фибриллярностью. Утолщение БМ встречается при многих заболеваниях с протеинурией. При этом наблюдаются увеличение промежутков между филаментами мембраны и деполимеризация цементирующего вещества, с чем связывают повышенную порозность мембраны для белков плазмы крови. Кроме того, к утолщению БМ гломерул ведут мембранозная трансформация (по J. Churg), в основе которой лежит избыточная продукция вещества БМ подоцитами, и мезангиальная интерпозиция (по М. Arakawa, P. Kimmelstiel), представленная «выселением» отростков мезангиоцитов на периферию капиллярных петель, отслаивающих эндотелий от БМ.

При многих заболеваниях с протеинурией, помимо утолщения мембраны, методом электронной микроскопии выявляются различные отложения (депозиты) в мембране или в непосредственной близости от нее. При этом каждому отложению той или иной химической природы (иммунные комплексы, амилоид, гиалин) соответствует своя ультраструктура. Наиболее часто в БМ выявляются депозиты иммунных комплексов, что ведет не только к глубоким изменениям самой мембраны, но и к деструкции подоцитов, гиперплазии эндотелиальных и мезангиальных клеток.

Капиллярные петли связывает друг с другом и подвешивает наподобие брыжейки к гломерулярному полюсу соединительная ткань клубочка, или мезангий, структура которого подчинена в основном функции фильтрации. С помощью электронного микроскопа и методов гистохимии внесено много нового в прежние представления о волокнистых структурах и клетках мезангия. Показаны гистохимические особенности основного вещества мезангия, приближающие его к фибромуцину фибрилл, способных воспринимать серебро, и клеток мезангия, отличающихся ультраструктурной организацией от эндотелия, фибробласта и гладкомышечного волокна.

В мезангиальных клетках, или мезангиоцитах, хорошо выряжены пластинчатый комплекс, гранулярная эндоплазматическая сеть, в них много мелких митохондрий, рибосом. Цитоплазма клеток богата основными и кислыми белками, тирозином, триптофаном и гистидином, полисахаридами, РНК, гликогеном. Своеобразие ультраструктуры и богатство пластического материала объясняют высокие секреторные и гиперпластические потенции мезангиальных клеток .

Мезангиоциты способны реагировать на те или иные повреждения гломерулярного фильтра продукцией вещества БМ , в чем проявляется репаративная реакция в отношении основного компонента гломерулярного фильтра. Гипертрофия и гиперплазия мезангиальных клеток ведут к расширению мезангиума, к его интерпозиции , когда отростки клеток, окруженные мембраноподобным веществом, или сами клетки выселяются на периферию клубочка, что вызывает утолщение и склероз стенки капилляра, а в случае прорыва эндотелиальной выстилки - облитерацию его просвета. С интерпозицией мезангия связано развитие гломерулосклероза при многих гломерулопатиях (ГН, диабетический и печеночный гломерулосклероз и т. д.).

Мезангиальные клетки как один из компонентов юкстагломерулярного аппарата (ЮГА) [Ушкалов А. Ф., Вихерт А. М., 1972; Зуфаров К. А., 1975; Rouiller С., Orci L., 1971] способны в определенных условиях к инкреции ренина . Этой функции служат, видимо, взаимоотношения отростков мезангиоцитов с элементами гломерулярного фильтра: определенное количество отростков перфорирует эндотелий клубочковых капилляров, проникает в их просвет и имеет непосредственные контакты с кровью .

Помимо секреторной (синтез коллагеноподобного вещества базальной мембраны) и инкреторной (синтез ренина) функций, мезангиоциты выполняют и фагоцитарную функцию - «очищения» клубочка, его соединительной ткани. Считают, что мезангиоциты способны к сокращению, которое подчинено фильтрационной функции. Это предположение основано на том, что в цитоплазме мезангиальных клеток найдены фибриллы, обладающие актиновой и миозиновой активностью .

Капсула клубочка представлена БМ и эпителием. Мембрана , продолжающаяся в главный отдел канальцев, состоит из ретикулярных волокон. Тонкие коллагеновые волокна закрепляют клубочек в интерстиции . Эпителиальные клетки фиксированы на базальной мембране с помощью филаментов, содержащих актомиозин . На этом основании эпителий капсулы рассматривают как разновидность миоэпителия, изменяющего объем капсулы, что служит функции фильтрации. Эпителий имеет кубическую форму, но в функциональном отношении близок к эпителию главного отдела канальцев ; в области полюса клубочка эпителий капсулы переходит в подоциты.


Клиническая нефрология

под ред. Е.М. Тареева