Домой / Мочеиспускание / Почему железные корабли не тонут в воде. II.2

Почему железные корабли не тонут в воде. II.2

Помогал проводить Денис Зеленов. 10 лет.

Летом Денис купался на Волго — Донском канале. Смотрел на большие корабли, как они идут по каналу, поднимаются и опускаются в камере шлюза. И задумался: что позволяет им не только держаться на воде, но и перевозить тяжелые грузы?

Почему корабли могут ходить по воде?

Причин несколько.

1. Плотность

Опыт 1

Все мы знаем, что если бросить в воду деревянную доску, то она будет лежать на ее поверхности, а вот металлический лист такого же размера сразу начинает тонуть.

Почему так происходит? Это определяется не весом предмета, а его плотностью . Плотность – это масса вещества, заключенная в определенном объеме.

Опыт 2

Мы взяли кубики одинакового размера 70×40х50 мм из разного материала — металл, дерево, камень и пенопласт и взвесили их. И увидели, что кубики имеют разный вес, а следовательно, и разную плотность.

Вес кубика из:

  • камня –264гр.,
  • пенопласта — 3 гр.,
  • металла — 1020 гр.,
  • дерева – 70 гр.

Отсюда сделали вывод, что из кубиков самый плотный материал – это металл, затем камень, дерево и пенопласт.

Опыт 3

А что произойдет, если эти кубики опустить в воду? Как видно из опыта камень и металл утонули – их плотность больше плотности воды, а пенопласт и дерево нет – их плотность меньше плотности воды. Значит, любой предмет будет плавать, если его плотность меньше плотности воды.

Следовательно, корабль, чтоб он держался на воде, надо сделать так, чтобы его плотность была меньше плотности воды. Предположим, делать его из такого материала, который имеет плотность меньше плотности воды и не тонет – например, из дерева. Из истории мы знаем, что человек именно из дерева делал вначале плоты, а затем лодки, используя свойство дерева –плавучесть.

Сегодня мы видим много кораблей сделанных из металла, но они не тонут. Причина в том, что их корпус наполнен воздухом. Воздух намного менее плотное вещество, чем вода. У корабля образуется, как бы общая, суммарная плотность воздуха и металла. В результате этого средняя плотность корабля вместе с огромным объемом воздуха в его корпусе становится меньше плотности воды. Потому-то и не тонет тяжелый корабль. Подтвердим это опытом.

Опыт 4

Опустим в воду плоский лист металла – он сразу же тонет, а любая посудина с бортами остается на плаву — в ней образуется запас плавучести. Туда даже можно положить груз.

Так же действует спасательные средства: жилет или круг, одетый на человека. С их помощью удается удержаться на плаву до прибытия спасателей.

2. Выталкивающая сила

Кроме того на погруженное в воду тело действует выталкивающая сила. На рисунке мы видим, что на тело со всех сторон действуют силы давления:

Силы, действующие в горизонтальном направлении, т.е. на борта судна, взаимно компенсируют друг друга. Давление же на нижнюю поверхность - на днище, превышает давление сверху. Вследствие этого возникает направленная вверх выталкивающая сила.

Это хорошо видно из следующего опыта.

Опыта 5

Мячик с воздухом внутри, погруженный в воду, с силой вылетает из нее вверх.

Это действует на мяч выталкивающая сила (сила Архимеда). Она то и удерживает корабль на плаву и позволяет кораблю плавать.

1-Силы поддержания; 2-Давление воды на борт судна

Отчего же зависит действие выталкивающей силы?

Первое – это от объема корабля и второе — от плотности воды, в которой корабль плавает. Эта сила тем больше, чем больше объем погруженного тела. Проверим это опытом.

Опыт 6

Положим на плавающую доску небольшой груз –они тонут. А вот объем надувной лодки значительно больше, и она может выдержать даже несколько человек.

Второе — выталкивающая сила меняется с увеличением плотности воды. Плотность воды можно увеличить, если ее сильно-сильно посолить.

Докажем это следующим опытом.

Екатерина Щукина
Конспект занятия «Почему не тонут корабли»

Тема : «Почему не тонут корабли .

Программное содержание : Закрепить знания детей о водном транспорте, свойствах воздуха. Развивать логическое мышление, умение рассуждать, высказывать свои предположения, аргументировать свои высказывания, познавательную активность.

Материалы : иллюстрации различных моделей кораблей и пароходов ; прозрачная ёмкость с водой; металлические предметы : скрепки, магнит, ножницы, чайная ложка, ключ, две баночки из-под леденцов, одна из которых с парусом; поднос, бумажные веера.

Ход занятия : В начале занятия педагог обращает внимание детей на иллюстрации с изображением кораблей , размещенные на доске.

Ребята, сегодня на занятии мы с вами поговорим о транспорте. Но для начала разгадайте загадку :

Ходит город-великан

На работу в океан.

О чём эта загадка? (о пароходе, корабле )

Совершенно верно. Сегодня на занятии мы будем говорить с вами о кораблях . Посмотрите внимательно на доску. Что такое изображено на всех иллюстрациях, вывешенных на доске? (корабль , пароход, парусник, лодка, катер)

Как одним словом можно назвать их всех? (водный транспорт)

-Почему все они относятся к водному транспорту? (все они передвигаются по воде)

Для чего нужен водный транспорт? (перевозить грузы, пассажиров, путешествовать)

Вспомните, из чего раньше строили корабли и лодки ? (из дерева)

Из чего строят корабли теперь ? (из металла)

Как вы думаете, почему ?

Дети высказывают свои предположения.

Ребята, посмотрите. Здесь на подносе у меня лежат какие-то предметы (педагог показывает лежащие на подносе скрепки, магнит, ножницы, чайную ложку, металлическую баночку из-под леденцов и предлагает детям назвать их).

Ребята, как вы думаете, какое отношение все эти предметы имеют к кораблям ? Что между ними общего? (все они также как и корабли сделаны из металла )

Чем отличаются эти предметы между собой?

Какими свойствами обладает металл? (он твёрдый, тяжёлый, тонет в воде) .

Если мы опустим эти предметы в воду, они поплывут? (нет) Почему ? (они тяжёлые)

А давайте попробуем.

Поочередно дети опускают предметы с подноса в воду и наблюдают за тем, что с ними происходит.

Что с ними произошло? (они утонули , пошли ко дну)

Значит, мы можем сделать вывод, что металлические предметы не обладают плавучестью, тонут . Но посмотрите на наши иллюстрации с кораблями . Они тоже построены из металла, и гораздо больше по размеру, однако плавают. Как такое возможно? Почему корабли , построенные из металла, не тонут ? (его волны держат, они большие, и т. д.)

Педагог показывает детям металлическую баночку из-под леденцов.

Это наш с вами кораблик . Он, как и настоящие корабли , сделан из металла. Как вы думаете, он поплывёт? (нет) Почему ?

Педагог опускает банку в воду.

-Почему она не тонет ?

Дети высказывают свои предположения, аргументируя их.

Ребята, что находится внутри нашего кораблика (банки? (Воздух)

А внутри больших кораблей воздух есть ? Где он находится? Влияет ли воздух на их плавучесть? Как?

В кораблях тоже есть воздух , который держит их на плаву. А почему тогда утонули другие металлические предметы? (в них нет воздуха)

-Почему воздух держит корабли на плаву ? (он легче воды)

И всё же, иногда случаются кораблекрушения , и корабли тонут , идут ко дну. Как вы думаете, почему это происходит ?

Как вы думаете, влияет ли на это погода? Как влияет? (сильный ветер и волны)

«….Ветер по морю гуляет

И кораблик подгоняет .

Он бежит себе в волнах

На раздутых парусах…»

Когда погода портится, на море начинается шторм, буря. А что такое шторм? Буря? (сильный ветер, гроза, большие волны)

Как влияет сильный ветер на то, что корабли тонут ? (рвёт паруса)

Как влияет вода на то, что корабли идут ко дну ? (волны заливают корабль )

Но мы же с вами выяснили, что корабли не тонут потому , что их держит на плаву воздух. Почему же тогда во время шторма происходит с кораблями , что они могут пойти ко дну?

Дети выдвигают свои предположения.

Давайте мы посмотрим, как влияет сильный ветер на плавучесть кораблей .

Педагог предлагает детям взять веера и начать сильно махать на «кораблик » и понаблюдать, что при этом происходит.

Что происходит с кораблём при сильном ветре ? (начинается шторм, буря и «кораблик терпит кораблекрушение )

Как вы думаете, а что сильнее влияет на то, что корабли терпят кораблекрушение : вода или ветер? Почему ? (они равны по силе)

В конце занятия педагог подводит итог.

Какой серьёзный вопрос мы сегодня выясняли на нашем занятии ? (почему не тонут корабли )

И почему же они не тонут ? (в полостях корабля содержится воздух . Он легче воды, поэтому держит корабль на плаву )

Публикации по теме:

12 Апреля-День космонавтики!Этот праздник мы помним с самого детства. И наверное не секрет,что каждый из нас когда то в далеком детстве мечтал.

Конспект непрерывной образовательной деятельности «Корабли для путешествия» 1. Введение в ситуацию. Дидактические задачи: мотивировать детей на включение в игровую деятельность. Воспитатель собирает детей около.

КОНСПЕКТ НОД В СТАРШЕЙ ЛОГОПЕДИЧЕСКОЙ ГРУППЕ ПО ИЗОДЕЯТЕЛЬНОСТИ (ПЛАСТИЛИНОГРАФИЯ, РИСОВАНИЕ) Тема: «КОРАБЛИ КАЧАЮТСЯ НА ВОЛНАХ».

Конспект образовательной деятельности по ИЗО в подготовительной группе (аппликация) «Корабли на рейде» Цель:Упражнять в вырезании и составлении изображения предмета (корабля,корабля,передавая основную форму и детали. Закреплять умение детей.

Конспект занятия по конструированию из мелкого строительного материала «Корабли» в подготовительной группе детей с ЗПР Цель: научиться моделировать из геометрических фигур и конструировать по модели различные виды судов. Пр. зад. : формировать умения детей.

Вот уже третий год в нашем детском саду проводится военный парад, посвященный Великой Победе в ВОВ «Мы этой памяти верны». Начинается он.

Способность держаться на поверхности воды свойственна не только кораблям, но и некоторым животным. Взять хотя бы водомерку. Это насекомое из семейства полужесткокрылых уверенно чувствует себя на водной глади, перемещаясь по ней скользящими движениями. Такая плавучесть достигается благодаря тому, что кончики лапок покрывают жесткие волоски, которые не смачиваются водой.

Ученые и изобретатели надеются, что в будущем человек сможет создать транспортное средство, которое будет передвигаться по воде по принципу водомерки.

Но в отношении традиционных судов принципы бионики не действуют. Объяснить плавучесть корабля, сделанного из металлических деталей, сможет любой ребенок, знакомый с основами физики. Как гласит закон Архимеда, на тело, которое погружается в жидкость, начинает действовать выталкивающая сила. Ее величина равна весу воды, вытесняемой телом при погружении. Тело не сможет , если сила Архимеда превышает вес тела или равна ему. По этой причине корабль остается на плаву.

Чем больше объем тела, тем больше воды он вытесняет. Железный шар, опущенный в воду, тут же утонет. Но если его раскатать до состояния тонкого листа и сделать из него полый внутри шар, то такая объемная конструкция будет держаться на воде, лишь слегка в нее погрузившись.

Суда с металлической обшивкой строят таким образом, чтобы в момент погружения корпус вытеснял очень большое количество воды. Внутри корабельного корпуса имеется множество пустых областей, заполненных воздухом. Поэтому средняя плотность судна оказывается значительно меньше, чем плотность жидкости.

Как сохранить плавучесть судна?

Корабль держится на плаву, пока его обшивка исправна и не имеет повреждений. Но судна окажется под угрозой, стоит ему получить пробоину. Сквозь прореху в обшивке внутрь судна начинает поступать вода, заполняя его внутренние полости. И тогда корабль вполне может затонуть.

Чтобы сохранить плавучесть судна при получении пробоины, его внутреннее пространство стали разделять перегородками. Тогда небольшая пробоина в одном из отсеков не угрожала общей живучести судна. Из отсека, который подвергался затоплению, с помощью насосов откачивали воду, а пробоину старались заделывать.

Хуже, если повреждалось сразу несколько отсеков. В этом случае судно могло утонуть из-за потери равновесия.

В начале XX века профессор Крылов предложил умышленно затапливать отсеки, расположенные в части судна, которая противоположна тем полостям, что подверглись затоплению. Корабль при этом несколько осаживался в воду, но оставался в горизонтальном положении и не мог утонуть в результате переворачивания.

Предложение морского инженера было столь необычным, что на него долгое время не обращали внимания. Только после поражения российского флота в войне с Японией его идею взяли на вооружение.

Современные океанские лайнеры по своим характеристикам выгодно отличаются от тех парусных судов, которые бороздили морские просторы несколько веков назад. Казалось бы, нынешние технологии должны обеспечить кораблям высокую живучесть и непотопляемость. Однако и теперь морские суда время от времени тонут. Причины морских катастроф могут быть самыми разными.

Инструкция

Современные суда оснащают самыми совершенными навигационными системами. Материалы, из которых изготовляют корпуса кораблей, отличаются высокой прочностью, устойчивостью к износу и повреждениям. Но время от времени в печати появляются печальные сообщения о гибели морских судов. Эти неприятности случались на море много веков назад, невозможно полностью исключить морские катастрофы и в XXI столетии.

Самая распространенная причина происходящих с кораблями катастроф заключается в пренебрежительном отношении экипажа к правилам мореходства. Опытные моряки знают, самое безопасное место для корабля – это суша. В море или океане корабль всегда подстерегают многочисленные неприятности. Особенно опасно плавание возле прибрежной полосы. Именно здесь чаще всего встречаются сильные течения, отмели и скалы, которые могут повредить судно.

Действительно, очень часто судно получает неустранимые повреждения, когда на полном ходу натыкается на препятствие. Обшивка корпуса достаточно крепка, но и она имеет предел прочности. Если судно получило серьезную , в трюм начинает поступать вода, которая заполняет отсеки. По этой причине судно теряет устойчивость и вполне может перевернуться.

Чтобы снизить вероятность затопления, внутреннее пространство современных кораблей стараются делить на герметичные отсеки, внутри которых устанавливают мощные насосы, способные откачать воду. Хуже всего, когда пробоина настолько велика, что помпы не могут справиться с нагрузкой. Большую прореху в обшивке заделать в море практически невозможно. Экипажу остается надеяться только на спасательные средства.

Любой корабль проектируется так, чтобы он имел определенный запас прочности и плавучести. Если поврежденное судно оказывается в океанских просторах в условиях сильного волнения или даже настоящего шторма, шансы на то, что корабль останется на плаву, уменьшаются. В условиях мощных волн некоторые суда, имеющие узкий и длинный корпус, вполне могут переломиться пополам. Итогом становится неминуемое погружение корабля под воду.

Еще одна из причин затопления корабля – неправильно размещенный и небрежно закрепленный груз. При шторме содержимое трюма вполне может переместиться в сторону, что нередко приводит к возникновению сильного крена. Если нагрузка на один из бортов становится критической, корабль способен опрокинуться набок и даже перевернуться вверх дном, после чего судно может пойти ко дну.

Полностью гарантировать безопасность при движении корабля по водным просторам нельзя. Но можно снизить вероятность трагедии, если неукоснительно соблюдать все правила вождения судов, выработанные многими поколениями мореходов, и с предельным вниманием отнестись к изменяющимся условиям, в которых проходит плавание.

Издревле человечество стремилось осваивать речные и морские просторы планеты. Первые ареалы расселения человека были образованы на берегах рек, озер, морей. Речные и морские пути – это первейшие транспортные магистрали, используемые человеком. Для освоения водных ресурсов развилась целая наука – судостроение. Постройка кораблей основана на целом комплексе наук и ремесел, опыте специалистов и технических достижениях

История судостроения

Историческая наука не может определить точных дат начала строительства судов. Но во многих письменных источниках упоминается о морских судах и существовании торговых путей, которые связывали между собой человеческие поселения. Эти свидетельства подтверждают высокие достижения древних кораблестроительных технологий. Первые простейшие суда задолго до колесной повозки.

В мифологии приведены детальные описания постройки кораблей. Уже примерно 2500 лет назад корабли различались по своему назначению - для перевозки грузов и для транспортировки пассажиров. Корабли приводились в действие шестами, веслами, парусами. Уже позднее стали строить судна для отдыха богатых людей. Основным материалом для постройки кораблей было дерево. Современные суда строят из металла, причем толщина каркаса может быть такой, что ее практически невозможно пробить.

Как корабль держится на воде

Способность корабля плавать в определенном положении определяется термином «плавучесть».
Плавучесть - свойство погруженного в жидкость тела оставаться в равновесии, не выходя из воды и не погружаясь дальше, то есть плавать.

Плавучесть судна обоснована тем, что сила тяжести судна уравновешивается выталкивающими силами воды, которые возникают в процессе гидростатического давления на корпус корабля. Эту взаимосвязь вывел в своем законе древнегреческий ученый Архимед. Выталкивающие силы воды зависят от плотности жидкости и объема корпуса корабля. Под действием этих сил корабль может двигаться.
Гидростатическое давление - это отношение сил к площади тела внутри любой жидкости, обусловленные весомостью жидкости.

Имеется несколько условий для плавания судна: если сила тяжести корабля больше гидростатического давления, то судно будет ; если сила тяжести корабля равна гидростатическому давлению, то судно будет находиться в равновесии в любой точке жидкости, будет плавать внутри жидкости; если сила тяжести меньше гидростатических сил, то судно будет держаться на поверхности.

Корабли по своей массе действительно тяжелые, но у них достаточный запас воздуха внутри корпуса и высокие борта. Сила тяжести любого судна меньше гидростатических сил воды, поэтому корабли держатся на воде. Если превысить грузоподъемность судна, то сила тяжести будет больше воздействия гидростатических сил, и корабль затонет. Аналогичная ситуация возникнет, если судно получило пробоину. Корпус наполнится водой, сила тяжести увеличивается, корабль тонет.

Если бросить в воду маленький камешек или медную монетку, они немедленно пойдут ко дну. Почему же тогда массивное и тяжелое деревянное бревно не тонет, а всего лишь слегка погружается в воду? Здесь срабатывают законы физики. Способность предметов плавать на поверхности жидкости объясняется различиями в плотности веществ.

Что такое плотность

Под плотностью вещества в подразумевают физическую величину, в которой между собой соотносятся масса и объем какого-либо тела. Плотность – существенный и относительно постоянный признак вещества, который широко используется для распознавания различных материалов, природа которых на глаз не определяется.

Зная плотность вещества, можно установить массу тела.

Любые тела, которые окружают человека в повседневной жизни, состоят из разнообразных материалов или веществ. Людям в быту и производственной деятельности часто приходится иметь дело с металлами, древесиной, пластмассами, камнем и так далее. Каждый материал имеет свою плотность. По этой причине масса двух разных предметов, имеющих одинаковые объем, форму и размеры, но изготовленных из разных веществ, будет различной.

Почему не тонет бревно

Различия в плотности воды и древесины как раз и позволяют тяжелому и массивному бревну не тонуть, а уверенно держаться на поверхности. Дело в том, что при нормальных условиях плотность воды равна единице. А вот у дерева этот показатель гораздо ниже. Поэтому увесистый кусок сухого дерева удерживается на поверхности жидкости, совсем незначительно в нее погружаясь.

Однако при определенных условиях утонуть способно и дерево. Если бревно длительное время находилось в воде, оно постепенно пропитывается влагой и набухает. В этом случае плотность бревна изменяется и может превысить плотность жидкости. Это явление часто наблюдалось во время промышленного сплава бревен по воде, когда они перегонялись к месту переработки естественным путем, без применения транспорта.

На реках, в местах усиленного сплава леса, до сих пор можно обнаружить так называемые топляки. Это бревна, которые полностью или частично затонули, легли на дно или зависли в слегка подтопленном состоянии. Топляки доставляют много неприятностей рыболовам-любителям. Они также представляют опасность для судов, движущихся с высокой скоростью.

Корабли, лодки, плоты и другие тела удерживаются на плаву из-за наличия у воды выталкивающих свойств. Как и все остальные жидкости, вода создает направленное вверх давление, которое может поддерживать помещенные в воду твердые предметы.

У кораблей в процесс обеспечения плавучести вовлечено несколько факторов, в том числе форма судна, его прочность и предусмотренные средства для противодействия волнам. В общем случае, корабль будет держаться на воде, если объем воды, который он вытесняет, весит больше, чем сам корабль. У такого корабля направленная вверх сила давления воды на корпус будет преодолевать направленную вниз силу тяжести, которая может считаться приложенной в одной точке, называющейся центром тяжести. Говорят, что корабли сохраняют устойчивость (на языке специалистов - остойчивость), если после накреняющих силовых воздействий таких факторов, как волны или ветер, они могут вернуться на ровный киль. Если корабль неправильно спроектирован или загружен, подобные внешние воздействия могут привести к потере остойчивости и корабль может пойти ко дну.

Закон Архимеда

Подвешенный на пружинных весах кубик (рисунок под текстом) весит в воде меньше (правая часть рисунка), чем в воздухе (левая часть рисунка). При погружении кубик вытесняет объем воды, вес которого равен уменьшению реса кубика. Связь между объемом погруженного тела и силой, выталкивающей это тело вверх, была впервые описана греческим математиком Архимедом в третьем столетии до нашей эры.

Слабо загруженный корабль имеет небольшую осадку, так как при большем погружении корпуса выталкивающая сила (синяя стрелка) начинает превышать силу тяжести (красная стрелка). Полностью загруженный корабль сидит в воде глубже, вытесняя больший объем воды, чем легкий корабль.

  1. Когда корабль держится на поверхности воды вертикально, его центр тяжести и выталкивающая сила находятся на одной линии. Корабль находится в равновесии.
  2. Когда корабль накреняется, выталкивающая сила смещается в сторону; в результате, выталкивающая сила давит вверх, сила тяжести тянет вниз и крен выправляется.
  3. Если центр тяжести накрененного корабля слишком сильно смещен вверх и расположен на слишком большом удалении от центра плавучести, корабль опрокинется.

Смещение центра тяжести

Три схематических разреза корабля на рисунке показывают, как загрузка влияет на остойчивость. Полный трюм корабля (ближний разрез) сводит центр тяжести и точку приложения выталкивающей силы (центр плавучести) близко друг к другу, делая корабль остойчивым. Накрененный волнами, такой корабль легко восстанавливает положение равновесия. В корабле с пустым трюмом (средний разрез), центры тяжести и плавучести отстоят друг от друга на большом расстоянии, поэтому корабль неустойчив. Вес заполненных водой балластных резервуаров (дальний разрез) восстанавливает остойчивость корабля.

Устройства для уменьшения качки

Два резервуара в корпусе (рисунок над текстом) помогают уменьшать бортовую качку. Вес воды, перетекающей из одного резервуара в другой, противодействует боковым ударам волн.

Носовой резервуар, попеременно заполняющийся водой и опорожняющийся, уменьшает килевую качку корабля в бурных морях.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Я очень люблю путешествовать. Прошлым летом я ездил отдыхать на Черное море. Однажды я увидел огромный танкер, плывущий в море. Современные танкеры, которые перевозят нефть, самые большие корабли в мире - их длина достигает пятисотааметров, а их танках помещается до полумиллиона тонн нефти!

По приездуыдомой я смастерил свой кораблик из бумаги, но в воде он перевернулся и вскоре утонул. И тут я задумался над вопросом: почему же настоящие корабли не тонут? Ведь ониасделаны из железа и гораздо тяжелее моего кораблика.

Мне захотелось самому этоппонять с помощью опытов и самостоятельно найти ответ на вопрос «Почемуакорабли не тонут?» Ведь так хочется, чтобы мой кораблик поплыл!

В связи с этим, мы выбрали тему своей исследовательской работы - «Почему корабли не тонут?».

Цель работы : выяснить причины, позволяющие кораблям не тонуть и не переворачиваться.

Для достижения цели поставлены следующие задачи:

1. Найти информацию о первыхасредствах передвижения по воде, истории кораблестроении, узнать о современных конструкторах, прославивших Россию и обпосновных принципах работы корабля;

2. Провести серию опытов, позволяющих шаг за шагом выяснить условия, при которых тела плавают в воде.

3. Попробовать изготовитьасамому кораблики (парусный и механический), учитывая свойства плавучести тел;

4. Провести анкетирование учащихся 5 классов, с целью выяснить, что знают о плавучести тел мои сверстники и проанализировать результаты исследований; аааааааааааааааааааааааааааааааааааа

5. Провести классный час на тему: «Почему не тонут корабли» с демонстрацией опытов, позволяющих выяснить условия, при которых тела плавают в воде. ааааааааааааааааааааааааааааааааа

В основу исследования положена гипотеза : предположим, корабль имеет особенности строения, позволяющие не тонуть, если:

1. Материал, изпкоторого изготовлен корабль, не дает ему утонуть.

2. Корабль не тонет, потому что он имеет особую форму

3. Корабль не тонет, потомуачто воздух внутри него держит его на плаву.

4. Секреты строения кораблей. ааааааааааааааааааааааааааааааа

Объект исследования - корабль

Предмет исследования - особенности строения корабля.

Во время выполнения работы использовались методы:

Метод поиска информации (анализ и обобщение литературы по теме исследования) аааааааааааааааааааааааааааааааааааааааааааааааааа

Наблюдение;

Анкетирование.

Теоретическая значимость: систематизация и обобщение материала по теме исследования.

Практическая значимость: практическое использование полученного материала на уроках, классных часах, во внеклассных мероприятиях.

    На корабле сквозь века

I.1. История развития кораблестроения

Для сбора информации мы использовали интернет, а также книги и другие печатные издания. В поиске знаний о древних судах, в большей мере, мы использовали интернет, такакак, именно там можно было найти более подробную и разнообразную информацию с рисунками, фотографиями и схемами. ииииииииииииииииииииииииииииииииииииииии

В поисках пищи люди часто селились по берегам рек и морей. Эти места были очень удобны для ловли рыбы и охоты на зверей, приходящих на водопой. Живя здесь, человеканаучился преодолеватьаводные пространства. Появились первые простейшие средства передвижения по воде: плоты и выдолбленные из дерева челноки. ииииииииииииииии

Одно из древнейших судов, обнаруженных на территории России, датируют примерно 5в. до н.э.

Во всех славянских языках существует слово корабль. Корень его - "кора" - лежит в основе таких слов, как "корзина". Древнейшиеарусские суда делались из гибких прутьев, какакорзина и обшивались корой (позднее - кожами). Известно, что уже в 8 в. наши соотечественники плавали по Каспийскому морю. В 9 и первой половине 10 в. русскиеаявлялись полными хозяевами Черного моря, и не даром в то время восточные народы называли его "Русским морем".ииииииииииииииии

В 12 в. на Руси впервые были построены палубные суда. Палубы, предназначенные для размещенияавоинов, одновременно служили защитой гребцам. Славяне были искуснымимсудостроителями и строили суда различных конструкций.

Благодаря этому при сжатии льдов, среди которых приходилось плавать, судно "выжималось" нааповерхность, не подвергаясь деформациям и снова погружалось в воду при расхождении льдов.

Организованное морское судостроение в России началось в конце 15 в., когда в Соловецкомпмонастыре былавоснована верфь для постройки промысловых судов.

Позднее уже в 16-17 вв. шаг вперед сделали запорожские казаки, совершавшие на своих "Чайках" рейды на турок. Методика постройки была такой же как при изготовлении киевскихвнабойных лодей (чтобы увеличить размер судна к долбленойи.середине с боков прибивалось несколько рядов досок).

В 1552 году после взятия Иваном Грозным Казани, а затем и завоевании в 1556 г. Астрахани, эти города становятся центрами строительства судов дляпКаспийского моря.

При Борисе Годунове были предпринятыабезуспешные попытки основать в России военный флот.

Первое в России морское судно иноземнойпконструкции "Фридерик" было построено в 1634 г. в Нижнем Новгороде русскими мастерами.

В июне 1693 г. Петр I заложил ввАрхангельске первую казенную верфь для постройки военныхр.кораблей. Через год Петр снова посетил Архангельск. К этому времени 24-пушечный корабль "Апостол Павел", фрегат "Святое Пророчество", галера иктранспортное судно "Фламов" образовали на Белом море первуюп.русскую военную флотилию. Началось создание регулярного военно-морского флота.

В 1702 г. в Архангельскепьбыли спущены два фрегата: "Святой Дух" и "Меркурий". В 1703 г.был заложен Санкт-Петербург центром которого стало Адмиралтейство - самая большая судостроительная верфь в стране. Первым крупным судном, сошедшим со стапеля Адмиралтейской верфи был построенныйаФедосием Скляевым и Петром Первым в 1712 г. 54-пушечный корабль "Полтава". К 1714 г. Россия имела свой парусный флот. ……………

Самым большим судном петровского времени был 90-пушечный корабль "Лесное" (1718г.).

При Петре Iр.были введены следующие суда:

Корабли - длиной 40-55 м., трехмачтовыеас 44-90 пушками;

Фрегаты - длиной до 35 м., трехмачтовые с 28-44 пушками;

Шнявы - длиной 25-35 м. , двухмачтовые с 10-18 пушками;

Пармы, буера, флейты и др. длиной до 30 м.

В 1782 г. было построено "водоходное судно" Кулибина. В начале 19 в. удачную "машину" с использованием дляптяги лошадей изобрел мастер Дурбажев.ьььььььььььььььььььььььььььььььььььььььььььььььььььььььььь

Первый рейсовый пароход нап.линии Петербург-Кронштадт был построен в 1815 г. На дошедшем до нас видно, что труба его кирпичная. На более позднем рисунке труба железная.бббббьььььььььььььььььььььььь

В 1830 г. в Петербурге было спущено на воду грузопассажирское судно "Нева", имевшее кроме двух паровых машин еще и парусное вооружение. В 1838 г. в Петербурге прошел испытания на Неве первый в мире электроход. В 1848 г. Амосовп.построил первый в Россииавинтовой фрегат "Архимед".

Особенно бурно стало развиваться пароходство на Волге и других реках после отмены крепостного права в 1861 г. ююююююююююююююююю

Главнымр.судостроительным предприятием стал основанный в 1849 г. Сормовский завод. Здесь были построены первые в России железные баржи и первый товаропассажирский пароход. Первоеав мире применение двигателя Дизеля на речных судах былор.осуществлено также в России в 1903 г.

Во второй половине 19 в. на смену деревянным кораблям пришли железные. Любопытно, что в России первымип.военными металлическими кораблями оказались две подводные лодки в 1834 г.

В 1835 г. было построено полуподводноеасудно "Отважный". Оно погружалось ниже уровня моря оставляя над водой толькор.дымовую трубу. В начале 19 в. на судах появились паровые машины, а использование сначала кованного железа, а затем прокатной стали в качестве конструкционного материала прип.постройке судов привело в 1850-60 гг. к революции в судостроении.

Переход к строительству железных судовапотребовал введения нового технологического процесса и полного преобразования заводов.

В 1864 г.и.была построена первая в России броненосная плавучая батарея. В 1870 г.п.в составе Балтийского флота было уже 23 броненосных корабля. В 1872 г.о. построен броненосец "Петр Великий" - один из сильнейших кораблей в мире по тем временам.

Для Черноморского флота А. Поповаразработал проект броненосца береговой обороны Новгород в 1871г.

В 1877 г. Макаровыми былир.сконструированы первые торпедные катера в мире. В том же году был спущенапервый в мире мореходный миноносецр."Взрыв".

Русскоер.транспортное судостроение конца 19 в. значительно отставало от военного. В 1864 г. было построено первоеаледокольное судно "пайлот". ооо

В 1899 г. построенпрледокол "Ермак" (плавал до 1964 г.). ииииииииииииииииииииииииииииииииииииииииииииииииииииииии

I.2. Современные конструкторы, прославившие Россию

Широко известны достижения отечественных ученых и конструкторов в области судостроения. В середине ХIХ века воавсем мире начинается переход от строительства деревянных парусных судов к паровым судам, появляются корабли, изготовленные из металла. Отечественный Военно-морской флот становится броненосным.ооооооооооооооооооооооооооооо

История оставила нам имена наиболее известных кораблестроителей, опережавших свое время. Особенно интересна судьба Петра Акиндиновича Титова, ставшего главным инженеромакрупнейшего судостроительного общества и не имевшего при этом даже свидетельства об окончании сельской школы. Знаменитый советскийакораблестроитель академик А.Н. Крылов считал себя учеником Титова.рррррррррррррррр

В 1834 году, когда флот не имел ни одного металлического корабля, на Александровском литейном заводеабыла построена подводная лодка, сделанная из металла. Ее вооружение состояло из шеста с гарпуном, пороховой мины и четырех пусковых установок для запуска ракет.

В 1904 году по проекту И.Г. Бубнова - знаменитого строителя линейных кораблей - была начата постройка подводных лодок. Созданные нашими мастерами лодки "Акула" и "Барс" оказалисьаболее совершенными, чем подводные суда всех воевавших в Первуюпмировую войну стран.

Важную роль в совершенствовании отечественного подводного флота сыграл советский конструктор-кораблестроитель иаизобретатель доктор технических наук, академик АН СССР Сергей Никитич Ковалев (1919). С 1955 года он работал главным конструкторомаЛенинградского центрального конструкторского бюро "Рубин". Ковалев - автор свыше 100 научных трудов и многих изобретений. Под егорруководством были созданы атомные подводные лодки-ракетоносцы, известные за рубежом под шифром "Янки", "Дельта" и "Тайфун".

Русский флот намного опередил иностранные флоты в развитии минного оружия. Эффективныеамины были разработаны нашими соотечественниками И.И. Фицтумом, П.Л. Шиллингом, Б.С. Якобсоном, Н.Н. Азаровым. Противолодочнуюрглубинную бомбу создал наш ученый Б.Ю. Аверкиев.ррррррррррррррррррррррррррррррррррррррррррррррр

В 1913 году русский конструктор Д.П. Григорович построил первый в мире гидросамолет. С тех пор в отечественном Военно-морском флоте велись работы по оборудованию судов в качествеаносителей корабельной авиации. Созданные на Черномрморе авиатранспорты, которые могли принимать до семи гидросамолетов, участвовали в боевых действиях в годы Первой мировой войны. тттттттттттттттттттттттттттттттттттттттттттттт

Ярким представителем отечественных конструкторов-кораблестроителей является Борис Израилевич Купенский (1916-1982). Он был главным конструктором сторожевых кораблей типа "Горностай" (1954-1958), первых в советском Военно-морском флоте противолодочных кораблей с зенитно-ракетными комплексами иагазотурбинной всережимной энергетической установкой (1962-1967), первого в ВМФ СССР боевого надводного корабля с ядерной энергетической установкой и головного в серии атомных ракетных крейсеров "Киров" (1968-1982) с мощным ударным и зенитным вооружением, практически неограниченной дальностью плавания. ооооооооооооооооооооооооооооооооооооо

лллллллллллллллллллллллллллллллллллллллллллллллллллллллллл

I.3. Принцип работы корабля

Трюмная часть корабля вытесняет массу воды, равную ее собственной массе. Пытаясь вернуться на свое место, вытесненная водаатолкает корабль вверх. ппппппппппппппппппппппппппппппппппппппппппппппппппппппп

Установленные под углом лопасти корабельного винта, вращаясь, создают усилие, толкающее винт и соответственно корабль вперед. На некоторых современных скоростных паромахаиспользуется водоструйный движитель; морская водаазасасывается в него, а затем выпускается высокоскоростной струей. пппппппппппппппппппппппппппппппппппппппп

Руль, подвешенный на шарнирах на корме судна, соединяется со штурвалом или румпелем. Если рулевойаотводит румпель влево, руль и корма двигаются вправо. Если необходимо сделать поворот вправо, он отводит румпель влево. рррррррррррррррррррррррррррррррр

В эпоху парусных судов была разработана такая установка парусов, которая позволяла двигаться против ветра. Делаяаповороты в разные стороны (идя галсами), корабль продвигался вперед, даже когда не было попутного ветра. пппппппппппппппппппппппппппппп

Выводы по главе I

В этой главе мы подобрали и изучили литературу по данной теме. Мы нашли информацию о первых средствах передвижения по воде, истории кораблестроении, узнали о современных конструкторах, прославивших Россию и об основных принципах работы корабля.

Узнали, что судостроение одна изадревнейших отраслей промышленности. Начало его отделено от нас десятком тысячелетий.

История кораблестроения начинается от появления первых плотов и лодок, выдолбленных из целого деревянного ствола, до современных красавцев-лайнеров и ракетных кораблей, уходит своими корнями в глубокую древность. Она столь же многогранна и насчитывает столько же веков, как и сама история человечества.

Главным стимулом возникновения мореплавания, равно как и связанного с ним кораблестроения, явилосьаразвитие торговли между народами, разделенными морскими и океанскими просторами. Первые корабли передвигались с помощью весел, лишь изредка используя в качестве вспомогательной силы - парус. Затем, приблизительно в X - XI веках, наряду с гребными судами появились чисто парусные суда.

Судостроительная промышленность, являясь одной из важнейших отраслей народного хозяйства и обладая научно-техническими и производственным потенциалом, оказывает решающее влияние на многие другие смежные отрасли и на экономику страны вацелом, а также на её обороноспособность и политическое положение в мире. Именно состояние судостроения является показателем научно-технического уровня страны и её военно-промышленного потенциала,ваккумулируя в своей продукции достижения металлургии, машиностроения, электроники и новейших технологий.

Мы задались вопросом, почему огромные суда держатся на воде и не тонут. Чтобы ответить на этот вопрос, мыапровели исследовательскую работу.

Глава II. Исследовательская работа

Изучив литературу, мы решили провести практическую работу с целью выяснить условия, при которых корабли не тонут. Исходя из этого, мы поставили перед собой следующие задачи:

    Провести анкетирование с целью выяснить, что знают о плавучести тел мои сверстники и проанализировать результаты;

    Провести серию опытов, позволяющих шаг за шагом выяснить условия, при которых тела плавают в воде;

    Попробовать изготовить кораблики (парусный и механический), учитывая свойства плавучести тел;

    Провести классный час на тему: «Почему не тонут корабли» с демонстрацией опытов, позволяющих выяснить условия, при которых тела плавают в воде.

II.1. Анкетирование учащихся пятых классов

Мы провели анкетирование с целью выяснить, что знают о плавучести тел мои сверстники. В этом опросе участвовали 37 человек. Ребятам мы задали один вопрос: «Почему не тонут корабли?» и предложили несколько вариантов ответов:

Материал;

Строение.

Результаты предложены в диаграмме (Приложение 1). Большинство ребят (20 (54%) из 37 опрошенных) считают, что особое строение корабля влияет на его плавучесть. Мы решили в этом разобраться практическим путём.

ррррррррррррррррррррррррррррррррррррррррррррррррррррррррр

II.2. Проведение экспериментальных опытов

Опыт № 1. Влияет ли материал, из которого асделан корабль, на его плавучесть?

Поочередно погружаем в воду предметы, сделанные из дерева, стекла, пластмассы, металла. Мы увидели, чтоапредметы из стекла и металла утонули, а из дерева и пластмассы - нет (Приложение 2).

Все окружающие нас предметы и вещества состоят из крошечных, не видимых взгляду частичек - молекул. Те тела, в которых молекулы располагаются очень близко друг к другу - обладают большей плотностью и быстрее идут ко дну. А тела, в которыхамолекулы расположены далеко друг от друга, обладают меньшейпплотностью, поэтому остаются плавать на поверхности воды. У железа и стекла плотность больше плотности воды, и поэтому они утонули. Тела, плотностьакоторых меньше плотности воды, свободно плавают по её поверхности. Современные корабли сделаны из металла. рррррррррррррррррррррррррррррррррррррррр

Вывод: Плавучесть корабля неазависит от материала, из которого он изготовлен. Следовательно, гипотеза № 1 не верна.

Опыт № 2. Влияет ли форма на плавучесть корабля?

Мы взяли пластилин, погрузилиаего в воду и увидели, что он утонул. Мы решили придать пластилину форму корабля, погрузилиаего вновь в воду и увидели, что он не утонул, а поплыл! Волшебство свершилось - тонущий материал плавает на поверхности! (Приложение 2)

Вывод: Корабль не тонет, потому что онаимеет особую форму, следовательно, гипотеза № 2 верна. пппппппппппппппппппппппп

Опыт 3. Секреты строения.

Корабли строят так, чтобы они в воде нептонули. Даже полностью гружённое судно не тонет. Потому что его контроль-отметка - грузовая ватерлиния - всегда находится над водой. Днище корабля специально делают такой формы, что когда корабль наклоняется вбок, онаволей - неволей стремится опять выпрямиться. Палубы на корабле закрывают его нутро как хорошие крышки. Поэтому вода не попадает в него, иадаже в самый сильный шторм корабль не становится заметно тяжелее. Конечно, если надежно задраены палубные люки. ппппппппппппппппппппппппппппппппп

У меня остался последний вопрос - почему под воздействием волн суда не переворачиваются? ппппппппппппппппппппппппппппппппппппппппппп

Я вспомнил, как у моего братишки любимой игрушкой была Неваляшка. Я решил использовать пустуюапластиковую бутылку. В воде она плавала. Тогда я наполнил дно монетами, и бутылка встала…..(Приложение 2)

Вывод: Центр тяжести - ниже основной части бутылки, и поэтому при любой качке корабль не перевернётся.

Опыт № 4. Влияние воздуха на плавучесть корабля.

Мы взяли два воздушных шарика, один из которых надули, и погрузили их в воду. Вода попалаавнутрь не надутого шарика, и он начал постепенно погружаться в воду. Надутый шарик не тонет, даже если надавить на него сверху рукой. (Приложение 2)

Вывод : Корабль не тонет, потому что воздухавнутри него держит его на плаву, следовательно, гипотеза № 3 верна. пппппппппппппппппппп

Оказывается, когда- то давно древнегреческийаучёный Архимед исследовал проблему плавучести тел и сформулировал закон: на всякое тело, погружённое в жидкость, действует выталкивающая сила, направленная вверх и равная весу вытесненной им жидкости, которыйаизвестен сейчас как Закон Архимеда. Таким образом, в нашем опыте на шарик снизу, из таза, действовала сила Архимеда, которая выталкивала шарик на поверхность.

Таким образом, атело не утонет, если архимедова сила равна или больше веса тела. Железные суда проектируют и строят с таким расчётом, чтобы при погружении они вытесняли огромное количество воды, вес которой равен их весу в загруженном состоянии (это называется водоизмещением корабля). В этом случае на них будет действовать выталкивающая архимедова сила соответствующей величины. Вот одна из причин, почему корабли не тонут. Корабльавнутри имеет множество пустых, наполненных воздухом помещений и средняя его плотность значительно меньше плотности воды. Именно поэтому он держит корабль на поверхности воды и не даёт затонуть. И корабль, даже с очень большим на борту грузом будет плыть по водам морей и океанов. ппппппппппппппппппппп

Таким образом, корабли не тонут потому что на них действует сила, действие которой впервые описаладревнегреческий учёный Архимед. Согласно выводам Архимеда на всякое тело, погружённое в жидкость, постоянно действует выталкивающая сила и величина её равна весу вытесненной этим телом воды. Если эта архимедова сила больше или равна весу тела, то оно не утонет. ааааааааааааааааааааааааааааааааааа

Если железка не имеет ни одной дырочки, куда бы попал воздух, то она сразу же потонет в воде… А если смастерить кораблик по всем правилам науки — он спокойно будет держаться на плаву. пппппппппппппппппп

эээээээээээээээээээээээээээээээээээээээээээээээээээээээээээээээээээээээээээээ

II.3. Изготовление корабликов (парусного и механического)

Мы решили смастерить свои кораблики, придерживаясь основных правил, выведенных из опытов. В результате мы смастерили парусный кораблик и механический. Для этого мы взяли древесный брусок, разметили на нем формы будущих кораблей, приаэтом мы придерживались строгой симметрии и точных расчетов, чтобы края наших кораблей были максимально ровными и одинаковымипотносительно боковых сторон. С помощью напильников мы выпилили форму и получили две заготовки. Парусный кораблик мы покрыли лаком, с помощью дрели сделали небольшие дырочки, чтобы укрепить мачту и паруса, сделали борта. Позже мы укрепили мачту и повесили на них паруса. Уамеханического кораблика мы установили моторчик, с помощью напильника сделали мачту у корабля, покрыли нашу заготовку гуашевой краской, раскрасили (Приложение 3). Из проведенных нами опытов над корабликами, мы увидели, что они не тонут и не наклоняются на бока, плывут ровно и плавно. (Приложение 4). После того, как мы провели серию опытов, позволяющих шаг за шагом выяснить условия, при которых тела плавают в воде, изготовили сами кораблики, мы провести классный час на тему: «Почему не тонут корабли», где познакомили ребят с основными правилами конструирования кораблей (Приложение 5).

Выводы по главе II

Таким образом, мы провели исследовательскую работу с целью выяснить условия, при которых корабли не тонут. Исходя из этого, нами было проведено анкетирование среди учащихся пятых классов с целью выяснить, что знают о плавучести тел мои сверстники. Оказалось, что 54% опрошенных считают, что особое строение корабля влияет на его плавучесть. Мы решили в этом разобраться практическим путём. С этой целью мы провели ряд опытов, где выяснилось, что плавучесть корабля не зависит от материала, из которого он изготовлен, корабль не тонет, потому что он имеет особую форму. Мы вывели главный вывод - корабли не тонут потому что на них действует сила, действие которой впервые описал древнегреческий учёный Архимед. Согласно выводамаАрхимеда на всякое тело, погружённое в жидкость, постоянно действует выталкивающая сила и величина её равна весу вытесненной этим телом воды. Если эта архимедова сила больше или равна весу тела, то оно не утонет. Мы изготовили кораблики (парусный и механический) и убедились, что если учитывать свойства плавучести тел, кораблик не потонет. Весь свой практическийавывод мы презентовали на классном часу, где еще раз показали ребятам опыты, доказывающие свойства плавучести тел и продемонстрировали сделанные нами кораблики.

ооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооаааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооооо

Заключение

Исходя из основной цели нашей работы - выяснить причины, позволяющие кораблям не тонуть и не переворачиваться, мы:

1. Подобрали и изучили литературу по данной теме.

Мы узнали о первых средствах передвижения по воде, истории кораблестроении, узнали о современных конструкторах, прославивших Россию и об основных принципах работы корабля.

2. Провели анкетирование с целью выяснить, что знают о плавучести тел мои сверстники и проанализировали результаты;

3. Провели серию опытов, позволяющих шаг за шагом выяснить условия, при которых тела плавают в воде;

4. Изготовили кораблики (парусный и механический), учитывая свойства плавучести тел;

5. Провели классный час на тему: «Почему не тонут корабли» с демонстрацией опытов, позволяющих выяснить условия, при которых тела плавают в воде.

Мы нашли ответ на свой вопрос “Почему корабли не тонут?”. Первая гипотеза наша не подтвердилась, вторая и третья подтвердились, но мы узнали много нового про кораблестроение, про свойства воды, про закон Архимеда.

Конечно, есть еще много того, что мы не понимаем, например, физические понятия, законы, формулы, но думаем, в старших классах мы сможем разобраться в этих вопросах подробнее.

Судостроительная промышленность, являясь одной из важнейших отраслей народного хозяйства и обладая научно-техническими и производственным потенциалом, оказывает решающее влияние на многие другие смежные отрасли и на экономикуастраны в целом, а также на её обороноспособность и политическое положение в мире. Именно состояние судостроения является показателем научно-технического уровня страны и её военно-промышленного потенциала, аккумулируя в своей продукции достижения металлургии, машиностроения, электроники и новейших технологий.

ааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааСписок литературы

1. Большая книга экспериментов для школьников/Под ред. Антонеллы Мейяни; Пер. с ит. Э.И.Мотылевой. - М.:ЗАО “РОСМЭН-ПРЕСС”, 2012. -

2. Самолёты. Автомобили. Корабли. /авт. текста Николас Харрис; ил. Питера Денниса; [пер. с англ. А. В.аБанкрашкова]. - Москва: Астрель, 2013.

3. Энциклопедический словарь юного физика. М.: Педагогика Пресс, 2005

4. Юный исследователь. М.: "РОСМЭН",2015

5. Ушаков С. З. Плавание тел / С. З. Ушаков: детскаяаэнциклопедия, том 3 «Числа и фигуры, вещество и энергия». - Москва: «Издательство Академии Педагогических Наук РСФСР», 1961.

6. citaty.su kratkaya-biografiya-arximeda/

7. http://ru.wikipedia.org

8. http://dreamworlds.ru

9. http://planeta.rambler.ru

аааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааа

Тезаурус

Атомныйракетныйкрейсер — подкласс ракетных крейсеров, отличающийся от других кораблей этого класса, наличием ядерной энергетической установки (ЯЭУ). Первыеаатомные крейсера появились в 1960-х годах. В связи со значительной сложностью и крайне высокой стоимостью они имелись лишь в ВМС сверхдержав — США и СССР. В настоящий момент атомные ракетные крейсера эксплуатируются только ВМФ России.

Бриг (англ. brig) — двухмачтовое судно с прямым парусным вооружением фок-мачты и грот-мачты, но с однимакосым гафельным парусом на гроте — грота-гаф-триселем

Броненосец — тяжёлый артиллерийский корабль, предназначенный для уничтожения кораблей всех типов и установления господства на море.

Канонерская лодка (от нем. Kanonenboot) — класс небольших боевых кораблей с мощным артиллерийским вооружением, предназначенных для боевых действий на реках, озёрах и в прибрежных морских районах, охраны гаваней.

Карбас - оснащался двумя мачтами, несущими прямые рейковые или шпринтовые паруса.

Корвет — класс военных кораблей.

Крейсер — (нидерл. kruiser, мн. ч. крейсера́ или кре́йсеры, от kruisen — крейсировать, плавать по определенному маршруту) — класс боевых надводных кораблей, способных выполнять задачи независимо от основного флота, среди которых может быть борьба с лёгкими силами флота и торговыми судами противника, оборона соединений боевых кораблей и конвоев судов, огневая поддержка приморскихафлангов сухопутных войск и обеспечение высадки морских десантов, постановка минных заграждений и другие. Со второй половины XX века тенденция к укрупнению боевых соединений для обеспечения защиты от авиации противника и специализация судов для выполнения конкретных задач привела к практическому исчезновению кораблей общего назначения, какими являются крейсера, из флотов многих стран. Только военно-морские силы США, России и Перу используют их в настоящее время.

Ледокол — самоходное специализированное судно, предназначенное для различных видов ледокольных операций с целью поддержания навигации в замерзающих бассейнах. К ледокольным операциям относятся: проводка судов во льдах, преодоление ледовых перемычек, прокладка канала, буксировка, околка, выполнение спасательных работ.

Линейный корабль — парусное деревянное военное судно, водоизмещением от 1 до 6 тысяч тонн, имевшее 2-3 ряда пушек в бортах.

Монитор — класс низкобортныхаброненосных артиллерийских кораблей, преимущественно прибрежного действия.

Миноносец — надводный мореходный корабль небольшого водоизмещения, основным вооружением которого является торпедное.

Пакеботы — (от нем. Pack — тюк и Boot — лодка или через нидерл. раkkеt-bооt) — двухмачтовое судно, сапомощью которого перевозили почту и пассажиров в некоторых странах в XVIII—XIX веках. В XIX веке использовались также паровые пакетботы

Пароходофрегат — фрегат, имевший кроме парусного вооружения паровой двигатель и гребные колёса в качестве движителя.

Парусный корабль — судно, которое использует парус и силу ветра для движения. Первые парусные и парусно-гребныеасуда появились несколько тысяч лет назад в эпоху древнейших цивилизаций. Парусные суда способны развивать скорость, превышающую скорость ветра.

Подводная лодка — класс кораблей, способных погружаться и длительное время действовать в подводном положении. Основное вооружение подводных сил военно-морского флота (сил) вооружённых сил многих государств мира. Важнейшее тактическоеасвойство подводной лодки — скрытность.

Поморская лодья - имела три мачты, несушие по прямому парусу.

Противолодочный крейсер — разновидность противолодочных кораблей, специализированных для несения противолодочных вертолётов.

Раньшина - судно, где корпус в подводной части имел яйцевидную форму.

Торпедный катер — класс быстроходных маломерных боевых кораблей, основным оружием которых является торпеда.

По разным источникам, торпедные катера ведут начало или от изобретения морских мин вообще, или от самодвижущихсяамин, позднее названных торпедами (с появлением мины встает вопрос о ее применении, а значит, и носителе).

Тральщик — корабль специального назначения, задачей которого является поиск, обнаружение и уничтожение морских мин и проводка кораблей (судов) через минные заграждения.

Трёхмачтовый военный корабль XVII—XIX вв. с прямым парусным вооружением и 18 — 30 орудиями на верхней палубе, использовался для разведывательной и посыльной службы. Водоизмещение 460 тонн и больше. С 40-х гг. XIX в. появились колёсные, а позднее —апарусно-винтовые корветы.

Фрегат — военный трёхмачтовый корабль с полным парусным вооружением с одной или двумя (открытой и закрытой) орудийными палубами. Фрегат отличался от парусных линейных кораблей меньшими размерами и артиллерийским вооружением и предназначался как для дальней разведки, то есть действий в интересах линейногоафлота, так и крейсерской службы — самостоятельных боевых действий на морских и океанских коммуникациях с целью защиты торговли или захвата и уничтожения торговых судов противника.

Шитик - плоскодонное судно с навесным рулем, оснащенное мачтой с прямым парусом и веслами.

Эскортный корабль специальной постройки, появившийся в ВМС США и Великобритании в период Второй мировой войны. Водоизмещение 500—1600 тонн, скорость 16—20 узлов (30—37 км/ч). Вооружение: артиллерийские установки калибра 76—102 мм и зенитные автоматы калибра 20—40 мм, бомбомёты и глубинные бомбы, оборудованы радиолокационными и гидроакустическимиасредствами воздушного и подводного наблюдения. С развитием ракетного оружия оснащаются ракетными установками.

Приложение 1

Анкетирование учащихся пятых классов