Домой / Анатомия почек / Откуда берутся гормоны. Виды гормонов и их функции

Откуда берутся гормоны. Виды гормонов и их функции

Гормоны передней доли гипофиза.

Железистая ткань передней доли продуцирует:

– гормон роста (ГР), или соматотропин, который воздействует на все ткани организма, повышая их анаболическую активность (т.е. процессы синтеза компонентов тканей организма и увеличения энергетических запасов).

– меланоцит-стимулирующий гормон (МСГ), усиливающий выработку пигмента некоторыми клетками кожи (меланоцитами и меланофорами);

– тиреотропный гормон (ТТГ), стимулирующий синтез тиреоидных гормонов в щитовидной железе;

– фолликулостимулирующий гормон (ФСГ) и лютеинизирующий гормон (ЛГ), относящиеся к гонадотропинам: их действие направлено на половые железы.

– пролактин, обозначаемый иногда как ПРЛ, – гормон, стимулирующий формирование молочных желез и лактацию.

Гормоны задней доли гипофиза

– вазопрессин и окситоцин. Оба гормона продуцируются в гипоталамусе, но сохраняются и высвобождаются в задней доле гипофиза, лежащей книзу от гипоталамуса. Вазопрессин поддерживает тонус кровеносных сосудов и является антидиуретическим гормоном, влияющим на водный обмен. Окситоцин вызывает сокращение матки и обладает свойством «отпускать» молоко после родов.

Тиреоидные и паратиреоидные гормоны.

Щитовидная железа расположена на шее и состоит из двух долей, соединенных узким перешейком. Четыре паращитовидных железы обычно расположены парами – на задней и боковой поверхности каждой доли щитовидной железы, хотя иногда одна или две могут быть несколько смещены.

Главными гормонами, секретируемыми нормальной щитовидной железой, являются тироксин (Т 4) и трийодтиронин (Т 3). Попадая в кровоток, они связываются – прочно, но обратимо – со специфическими белками плазмы. Т 4 связывается сильнее, чем Т 3 , и не так быстро высвобождается, а потому он действует медленнее, но продолжительнее. Тиреоидные гормоны стимулируют белковый синтез и распад питательных веществ с высвобождением тепла и энергии, что проявляется повышенным потреблением кислорода. Эти гормоны влияют также на метаболизм углеводов и, наряду с другими гормонами, регулируют скорость мобилизации свободных жирных кислот из жировой ткани. Короче говоря, тиреоидные гормоны оказывают стимулирующее действие на обменные процессы. Повышенная продукция тиреоидных гормонов вызывает тиреотоксикоз, а при их недостаточности возникает гипотиреоз, или микседема.

Другим соединением, найденным в щитовидной железе, является длительно действующий тиреоидный стимулятор. Он представляет собой гамма-глобулин и, вероятно, вызывает гипертиреоидное состояние.

Гормон паращитовидных желез называют паратиреоидным, или паратгормоном; он поддерживает постоянство уровня кальция в крови: при его снижении паратгормон высвобождается и активирует переход кальция из костей в кровь до тех пор, пока содержание кальция в крови не вернется к норме. Другой гормон – кальцитонин – оказывает противоположное действие и выделяется при повышенном уровне кальция в крови. Раньше полагали, что кальцитонин секретируется паращитовидными железами, теперь же показано, что он вырабатывается в щитовидной железе. Повышенная продукция паратгормона вызывает заболевание костей, камни в почках, обызвествление почечных канальцев, причем возможно сочетание этих нарушений. Недостаточность паратгормона сопровождается значительным снижением уровня кальция в крови и проявляется повышенной нервно-мышечной возбудимостью, спазмами и судорогами.

Гормоны надпочечников.

Надпочечники – небольшие образования, расположенные над каждой почкой. Они состоят из внешнего слоя, называемого корой, и внутренней части – мозгового слоя. Обе части имеют свои собственные функции, а у некоторых низших животных это совершенно раздельные структуры. Каждая из двух частей надпочечников играет важную роль как в нормальном состоянии, так и при заболеваниях. Например, один из гормонов мозгового слоя – адреналин – необходим для выживания, так как обеспечивает реакцию на внезапную опасность. При ее возникновении адреналин выбрасывается в кровь и мобилизует запасы углеводов для быстрого высвобождения энергии, увеличивает мышечную силу, вызывает расширение зрачков и сужение периферических кровеносных сосудов. Таким образом, направляются резервные силы для «бегства или борьбы», а кроме того снижаются кровопотери благодаря сужению сосудов и быстрому свертыванию крови. Адреналин стимулирует также секрецию АКТГ (т.е. гипоталамо-гипофизарную ось). АКТГ, в свою очередь, стимулирует выброс корой надпочечников кортизола, в результате чего увеличивается превращение белков в глюкозу, необходимую для восполнения в печени и мышцах запасов гликогена, использованных при реакции тревоги.

Кора надпочечников секретирует три основные группы гормонов: минералокортикоиды, глюкокортикоиды и половые стероиды (андрогены и эстрогены). Минералокортикоиды – это альдостерон и дезоксикортикостерон. Их действие связано преимущественно с поддержанием солевого баланса. Глюкокортикоиды влияют на обмен углеводов, белков, жиров, а также на иммунологические защитные механизмы. Наиболее важные из глюкокортикоидов – кортизол и кортикостерон. Половые стероиды, играющие вспомогательную роль, подобны тем, что синтезируются в гонадах; это дегидроэпиандростерон сульфат, D 4 -андростендион, дегидроэпиандростерон и некоторые эстрогены.

Избыток кортизола приводит к серьезному нарушению метаболизма, вызывая гиперглюконеогенез, т.е. чрезмерное превращение белков в углеводы. Это состояние, известное как синдром Кушинга, характеризуется потерей мышечной массы, сниженной углеводной толерантностью, т.е. сниженным поступление глюкозы из крови в ткани (что проявляется аномальным увеличением концентрации сахара в крови при его поступлении с пищей), а также деминерализацией костей.

Избыточная секреция андрогенов опухолями надпочечника приводит к маскулинизации. Опухоли надпочечника могут вырабатывать также эстрогены, особенно у мужчин, приводя к феминизации.

Гипофункция (сниженная активность) надпочечников встречается в острой или хронической форме. Причиной гипофункции бывает тяжелая, быстро развивающаяся бактериальная инфекция: она может повредить надпочечник и привести к глубокому шоку. В хронической форме болезнь развивается вследствие частичного разрушения надпочечника (например, растущей опухолью или туберкулезным процессом) либо продукции аутоантител. Это состояние, известное как аддисонова болезнь, характеризуется сильной слабостью, похуданием, низким кровяным давлением, желудочно-кишечными расстройствами, повышенной потребностью в соли и пигментацией кожи. Аддисонова болезнь, описанная в 1855 Т.Аддисоном, стала первым распознанным эндокринным заболеванием.

Адреналин и норадреналин – два основных гормона, секретируемых мозговым слоем надпочечников. Адреналин считается метаболическим гормоном из-за его влияния на углеводные запасы и мобилизацию жиров. Норадреналин – вазоконстриктор, т.е. он сужает кровеносные сосуды и повышает кровяное давление. Мозговой слой надпочечников тесно связан с нервной системой; так, норадреналин высвобождается симпатическими нервами и действует как нейрогормон.

Избыточная секреция гормонов мозгового слоя надпочечников (медуллярных гормонов) возникает при некоторых опухолях. Симптомы зависят от того, какой из двух гормонов, адреналин или норадреналин, образуется в большем количестве, но чаще всего наблюдаются внезапные приступы приливов, потливости, тревоги, сердцебиения, а также головная боль и артериальная гипертония.

Тестикулярные гормоны.

Семенники (яички) имеют две части, являясь железами и внешней, и внутренней секреции. Как железы внешней секреции они вырабатывают сперму, а эндокринную функцию осуществляют содержащиеся в них клетки Лейдига, которые секретируют мужские половые гормоны (андрогены), в частности D 4 -андростендион и тестостерон, основной мужской гормон. Клетки Лейдига вырабатывают также небольшое количество эстрогена (эстрадиола).

Семенники находятся под контролем гонадотропинов. Гонадотропин ФСГ стимулирует образование спермы (сперматогенез). Под влиянием другого гонадотропина, ЛГ, клетки Лейдига выделяют тестостерон. Сперматогенез происходит только при достаточном количестве андрогенов. Андрогены, в частности тестостерон, ответственны за развитие вторичных половых признаков у мужчин.

Нарушение эндокринной функции семенников сводится в большинстве случаев к недостаточной секреции андрогенов. Например, гипогонадизм – это снижение функции семенников, включая секрецию тестостерона, сперматогенез или и то, и другое. Причиной гипогонадизма может быть заболевание семенников, либо – опосредованно – функциональная недостаточность гипофиза.

Повышенная секреция андрогенов встречается при опухолях клеток Лейдига и приводит к чрезмерному развитию мужских половых признаков, особенно у подростков. Иногда опухоли семенников вырабатывают эстрогены, вызывая феминизацию. В случае редкой опухоли семенников – хориокарциномы – продуцируется столько хорионических гонадотропинов, что анализ минимального количества мочи или сыворотки дает те же результаты, что и при беременности у женщин. Развитие хориокарциномы может привести к феминизации.

Гормоны яичников.

Яичники имеют две функции: развитие яйцеклеток и секреция гормонов. Гормоны яичников – это эстрогены, прогестерон и D 4 -андростендион. Эстрогены определяют развитие женских вторичных половых признаков. Эстроген яичников, эстрадиол, вырабатывается в клетках растущего фолликула – мешочка, который окружает развивающуюся яйцеклетку. В результате действия как ФСГ, так и ЛГ, фолликул созревает и разрывается, высвобождая яйцеклетку. Разорванный фолликул превращается затем в т.н. желтое тело, которое секретирует как эстрадиол, так и прогестерон. Эти гормоны, действуя совместно, готовят слизистую матки (эндометрий) к имплантации оплодотворенной яйцеклетки. Если оплодотворения не произошло, желтое тело подвергается регрессии; при этом прекращается секреция эстрадиола и прогестерона, а эндометрий отслаивается, вызывая менструацию.

Хотя яичники содержат много незрелых фолликулов, во время каждого менструального цикла созревает обычно только один из них, высвобождающий яйцеклетку. Избыток фолликулов подвергается обратному развитию на протяжении всего репродуктивного периода жизни женщины. Дегенерирующие фолликулы и остатки желтого тела становятся частью стромы – поддерживающей ткани яичника. При определенных обстоятельствах специфические клетки стромы активируются и секретируют предшественник активных андрогенных гормонов – D 4 -андростендион. Активация стромы возникает, например, при поликистозе яичников – болезни, связанной с нарушением овуляции. В результате такой активации продуцируется избыток андрогенов, что может вызвать гирсутизм (резко выраженную волосатость).

Пониженная секреция эстрадиола имеет место при недоразвитии яичников. Функция яичников снижается и в менопаузе, так как запас фолликулов истощается и как следствие падает секреция эстрадиола, что сопровождается целым рядом симптомов, наиболее характерным из которых являются приливы. Избыточная продукция эстрогенов обычно связана с опухолями яичников. Наибольшее число менструальных расстройств вызвано дисбалансом гормонов яичников и нарушением овуляции.

Гормоны плаценты человека.

Плацента – пористая мембрана, которая соединяет эмбрион (плод) со стенкой материнской матки. Она секретирует хорионический гонадотропин и плацентарный лактоген человека. Подобно яичникам плацента продуцирует прогестерон и ряд эстрогенов.

Хорионический гонадотропин (ХГ).

Имплантации оплодотворенной яйцеклетки способствуют материнские гормоны – эстрадиол и прогестерон. На седьмой день после оплодотворения человеческий зародыш укрепляется в эндометрии и получает питание от материнских тканей и из кровотока. Отслоение эндометрия, которое вызывает менструацию, не происходит, потому что эмбрион секретирует ХГ, благодаря которому сохраняется желтое тело: вырабатываемые им эстрадиол и прогестерон поддерживают целость эндометрия. После имплантации зародыша начинает развиваться плацента, продолжающая секретировать ХГ, который достигает наибольшей концентрации примерно на втором месяце беременности. Определение концентрации ХГ в крови и моче лежит в основе тестов на беременность.

Плацентарный лактоген человека (ПЛ).

В 1962 ПЛ был обнаружен в высокой концентрации в ткани плаценты, в оттекающей от плаценты крови и в сыворотке материнской периферической крови. ПЛ оказался сходным, но не идентичным с гормоном роста человека. Это мощный метаболический гормон. Воздействуя на углеводный и жировой обмен, он способствует сохранению глюкозы и азотсодержащих соединений в организме матери и тем самым обеспечивает снабжение плода достаточным количеством питательных веществ; одновременно он вызывает мобилизацию свободных жирных кислот – источника энергии материнского организма.

Прогестерон.

Во время беременности в крови (и моче) женщины постепенно возрастает уровень прегнандиола, метаболита прогестерона. Прогестерон секретируется главным образом плацентой, а основным его предшественником служит холестерин из крови матери. Синтез прогестерона не зависит от предшественников, продуцируемых плодом, судя по тому, что он практически не снижается через несколько недель после смерти зародыша; синтез прогестерона продолжается также в тех случаях, когда у пациенток с брюшной внематочной беременностью произведено удаление плода, но сохранилась плацента.

Эстрогены.

Первые сообщения о высоком уровне эстрогенов в моче беременных появились в 1927, и вскоре стало ясно, что такой уровень поддерживается только при наличии живого плода. Позже было выявлено, что при аномалии плода, связанной с нарушением развития надпочечников, содержание эстрогенов в моче матери значительно снижено. Это позволило предположить, что гормоны коры надпочечников плода служат предшественниками эстрогенов. Дальнейшие исследования показали, что дегидроэпиандростерон сульфат, присутствующий в плазме крови плода, является основным предшественником таких эстрогенов, как эстрон и эстрадиол, а 16-гидроксидегидроэпиандростерон, также эмбрионального происхождения, – основной предшественник еще одного продуцируемого плацентой эстрогена, эстриола. Таким образом, нормальное выделение эстрогенов с мочой при беременности определяется двумя условиями: надпочечники плода должны синтезировать предшественники в нужном количестве, а плацента – превращать их в эстрогены.

Гормоны поджелудочной железы.

Поджелудочная железа осуществляет как внутреннюю, так и внешнюю секрецию. Экзокринный (относящийся к внешней секреции) компонент – это пищеварительные ферменты, которые в форме неактивных предшественников поступают в двенадцатиперстную кишку через проток поджелудочной железы. Внутреннюю секрецию обеспечивают островки Лангерганса, представленные клетками нескольких типов: альфа-клетки секретируют гормон глюкагон, бета-клетки – инсулин. Основное действие инсулина заключается в понижении уровня глюкозы в крови, осуществляемое главным образом тремя способами: 1) торможением образования глюкозы в печени; 2) торможением в печени и мышцах распада гликогена (полимера глюкозы, который организм при необходимости может превращать в глюкозу); 3) стимуляцией использования глюкозы тканями. Недостаточная секреция инсулина или повышенная его нейтрализация аутоантителами приводят к высокому уровню глюкозы в крови и развитию сахарного диабета. Главное действие глюкагона – увеличение уровня глюкозы в крови за счет стимулирования ее продукции в печени. Хотя поддержание физиологического уровня глюкозы в крови обеспечивают в первую очередь инсулин и глюкагон, другие гормоны – гормон роста, кортизол и адреналин – также играют существенную роль.

Желудочно-кишечные гормоны.

Гормоны желудочно-кишечного тракта – гастрин, холецистокинин, секретин и панкреозимин. Это полипептиды, секретируемые слизистой оболочкой желудочно-кишечного тракта в ответ на специфическую стимуляцию. Полагают, что гастрин стимулирует секрецию соляной кислоты; холецистокинин контролирует опорожнение желчного пузыря, а секретин и панкреозимин регулируют выделение сока поджелудочной железы.

Нейрогормоны

– группа химических соединений, секретируемых нервными клетками (нейронами). Эти соединения обладают гормоноподобными свойствами, стимулируя или подавляя активность других клеток; они включают упомянутые ранее рилизинг-факторы, а также нейромедиаторы, функции которых заключается в передаче нервных импульсов через узкую синаптическую щель, отделяющую одну нервную клетку от другой. К нейромедиаторам относятся дофамин, адреналин, норадреналин, серотонин, гистамин, ацетилхолин и гамма-аминомасляная кислота.

В середине 1970-х годов был открыт ряд новых нейромедиаторов, обладающих морфиноподобным обезболивающим действием; они получили название «эндорфины», т.е. «внутренние морфины». Эндорфины способны связываться со специальными рецепторами в структурах головного мозга; в результате такого связывания в спинной мозг посылаются импульсы, которые блокируют проведение поступающих болевых сигналов. Болеутоляющее действие морфина и других опиатов несомненно обусловлено их сходством с эндорфинами, обеспечивающим их связывание с теми же блокирующими боль рецепторами.

Каждая железа внутренней секреции устроена так, чтобы их деятельность была незаменимой во многих происходящих процессах в организме. Если хорошо разобраться во всей этой замысловатой системе, то прояснится такая картина: гормоны являются регулировщиками практически каждой функции нашего сложного организма. На некоторые из них полностью влияет выработка гормонов, а на некоторые только частично. От этой составляющей организма зависят даже самые важные физиологические показатели: рост, умственное развитие, сон, бодрствование, эмоции, возможность продолжать род и т.д.

По всему человеческому организму равномерно расположились так называемые «Фабрики гормонов», а если говорить научным языком, то это - эндокринные железы и те железы, которые состоят из эндокринной ткани. А теперь давайте подробнее рассмотрим все места выработки гормонов, и значение последних для организма человека и его жизни в целом.

Гипофиз (pituitary gland)

Эта железа расположилась в самом основании головного мозга. Она вырабатывает такие виды гормонов:

  • Пролактин;
  • Гормон роста;
  • Гонадотропный гормон;
  • Тиреотропный гормон;
  • Вазопрессин;
  • Адренокортикотропный гормон;
  • Окситоцин;
  • Мелинотропин.

В его основные обязанности входит ответственность за рост, правильный обмен веществ, поддержание репродуктивной функции и плотности тканей. Мало того, данная железа имеет возможность контролировать функции всех остальных желез и даже выработку ими гормонов. Гипофиз несет ответственность за сохранение большинства органов или за их укрепление (головной мозг, сердце, кровеносные сосуды, почки, костная ткань, иммунная система). От того насколько хорошо функционирует гипофиз зависит продолжительность жизни человека.

Все случаи гигантизма либо же акромегалии тоже зависят от гипофиза. Такие нарушения случаются в результате повышения секреции его гормонов. И, наоборот, при понижении происходит недостаточность гипоталамо-гипофизарная.

Гипоталамус (hypothalamus)

Это уже целый отдел головного мозга, который представляет собой центр, в котором происходит регуляция всех вегетативных функций. Если сравнить все функции организма с уровневой системой, то гипоталамус будет находиться на высшем уровне ее функциональных возможностей. Гипоталамус, имея возможность воздействовать с широким кругом остальных желез внутренней секреции, контролирует процессы репродуктивной функции, лактации, поддержания гомеостаза.

Из этого следует вывод, что если поражается гипоталамус, то это приводит к серьезным нарушениям большинства функций организма. В таких случаях нарушаются все процессы, связанные с (водно-солевой, белковый, липидный, углеводный, тепловой и другие). Начинают развиваться патологические синдромы и эндокринные заболевания.

Эпифиз (pineal gland)

Напоминает образование округлой формы небольших размеров, которое расположено в черепной коробке под полушариями головного мозга. Со стороны эпифиз похож на шишку, поэтому его часто называют «шишковидная железа». Это практически стало его вторым названием.

Орган регулирует суточные ритмы организма, и отвечает за его адаптацию к тем условиям окружающего мира, которым свойственно меняться (например, смена часовых поясов, освещение при перемене день-ночь).

Шишковидное тело вырабатывает гормоны, которые могут вызывать угнетающее действие функций мозга (мелатонин и гломерулотонин).

В случае неправильной работы эпифиза в человека нарушаются биологические ритмы, встречаются расстройства сна.

Щитовидная железа (thyroid gland)

Место расположения - передняя сторона шеи. Она создана из двух долей.

Продуцирует такие три гормона:

  • Тироксин;
  • Тиреокальцитонин;
  • Трийодтиронин.

Все они играют непосредственную роль в процессах регуляции обменов веществ, а также влияют на работу сердечно-сосудистой системы. Только под их воздействием центральная нервная система может нормально развиваться и функционировать.

Щитовидную железу напрямую контролирует гипофиз своей передней долей и теми гормонами, которые она синтезирует. Поэтому все основные заболевания щитовидной железы связаны с нарушением работы именно гипоталамо-гипофизарной системы. При чем если тиреоидов вырабатывается намного больше положенного, то это также является нарушение и может вызвать токсический диффузный зоб. Такие сбои в организме совсем маленького ребенка могут спровоцировать слабоумие.

Надпочечники (adrenals glands)

Эта железа функционирует в паре, то есть их две. Спрятаны за брюшинной над верхом почек. Вырабатывают следующие гормоны:

  • Кортикостерон;
  • Гидрокортизон;
  • Альдостерон;
  • Кортизон;
  • Андрогены;
  • Прогестерон;
  • Дезоксирокортикостерон;
  • Норадреналин;
  • Эстрогены;
  • Адреналин.

Спектр влияния: тонус сосудов, обменный процесс веществ, качество иммунитета, регуляция обмена водно-электролитного, нормализация процессов жировых, белковых, углеводных.

Поджелудочная железа (pancreas)

Железа, которая одновременно умудряется отвечать за две функции: внутреннюю секрецию и за слаженную работу пищеварительной системы. Ее основные задачи - выработка инсулина и глюкагона. Эти два гормона полностью отвечают за правильный углеводный обмен, а также за нормальный уровень сахара, который находится в крови человека.

В случае поражения той части поджелудочной железы, которая отвечает за производство гормона, падает секреция инсулина, нарушается углеводный обмен, а после этого начинает развиваться сахарный диабет. Так, что развития сахарного диабета во многом зависит от работы поджелудочной железы.

Яичко

Эта железа имеется только в мужском организме. Она парная. Основные функции: секреция половых гормонов у мужчин и выработка сперматозоидов.

В этой железе синтезируются андрогены и самое большое количество тестостерона. От уровня таких гормонов зависит направленность организма на мужской тип, правильность развития именно мужских половых органов, а главное – либидо.

Яичник

А вот яичник – это железа женщин и она, также как яичко, парная. Гормоны: эстрогены, прогестерон и в малых дозах – андрогены. С их помощью организм начинает формировать все женские признаки: гениталии и вторичные половые признаки. Также эти гормоны играют большую роль в подготовке организма женщины к будущей беременности, родам и лактации. Вышеупомянутые гормоны принимают непосредственную роль в балансировке некоторых обменных процессах (водном, углеводном, минеральном). Иммунная система и различные органы также поддерживают свои функции, подпитываясь этими гормонами.

Сделав выводы, мы приходим к такому мнению, что организм просто не может нормально функционировать во время сбоя, какой-либо из желез. Ведь именно они являются базами производства и хранения гормонов.

Для написания данной статьи были использованы материалы из книги «Как продлить свою молодость», авторы Тьерри Эртог и Жюль-Жак Набе.

Что такое гормоны, все более или менее представляют. До недавнего времени было принято считать, что их синтезируют эндокринные железы или специализированные эндокринные клетки, разбросанные по всему организму и объединенные в диффузную эндокринную систему. Клетки диффузной эндокринной системы развиваются из того же зародышевого листка, что и нервные, потому называются нейроэндокринными. Где их только не находили: в щитовидной железе, мозговом веществе надпочечников, гипоталамусе, эпифизе, плаценте, поджелудочной железе и желудочно-кишечном тракте. А недавно их обнаружили в пульпе зуба, причем оказалось, что количество нейроэндокринных клеток в ней меняется в зависимости от здоровья зубов.

Честь этого открытия принадлежит Александру Владимировичу Московскому, доценту кафедры ортопедической стоматологии Медицинского института при Чувашском государственном университете им. И. Н. Ульянова. Нейроэндокринные клетки отличаются характерными белками, и их можно выявить иммунологическими методами. Именно так А. В. Московский их и обнаружил. (Это исследование опубликовано в № 9 «Бюллетеня экспериментальной биологии и медицины» за 2007 год.)

Пульпа - мягкая сердцевинка зуба, в которой находятся нервы и кровеносные сосуды. Ее извлекали из зубов и приготовляли срезы, на которых затем искали специфические белки нейроэндокринных клеток. Делали это в три этапа. Сначала подготовленные срезы обрабатывали антителами к искомым белкам (антигенам). Антитела состоят из двух частей: специфической и неспецифической. После связывания с антигенами они остаются на срезе неспецифической частью вверх. Срез обрабатывают антителами к этой неспецифической части, которые помечены биотином. Затем этот «бутерброд» с биотином сверху обрабатывают специальными реагентами, и место локализации исходного белка проявляется как красноватое пятнышко.

Нейроэндокринные клетки отличаются от клеток соединительной ткани более крупными размерами, неправильной формой и наличием в цитоплазме красновато-коричневых глыбок (окрашенных белков), нередко закрывающих ядро.

В здоровой пульпе нейроэндокринных клеток немного, но при кариесе их количество возрастает. Если зуб не лечить, то болезнь прогрессирует, а нейроэндокринных клеток становится все больше, причем они скапливаются вокруг очага поражения. Пик их численности приходится на кариес столь запущенный, что воспаляются и ткани вокруг зуба, то есть начинается пародонтит.

У пациентов, которые предпочитают долго мучиться дома, чем один раз сходить к врачу, развивается воспаление пульпы и пародонта. На этой стадии количество нейроэндокринных клеток уменьшается (хотя их все равно больше, чем в здоровой пульпе) - их вытесняют клетки воспаления (лейкоциты и макрофаги). Снижается их численность и при хроническом пульпите, но при этом заболевании клеток в пульпе вообще остается мало, им на смену приходят склеротические тяжи.

По мнению А. В. Московского, нейроэндокринные клетки при кариесе и пульпите регулируют в очаге воспаления процессы микроциркуляции и метаболизма. Поскольку нервных волокон при кариесе и пульпите тоже становится больше, эндокринная и нервная системы и в этом вопросе действуют сообща.

Гормоны везде?

В последние годы ученые выяснили, что производство гормонов - отнюдь не прерогатива специализированных эндокринных клеток и желез. Этим занимаются и другие клетки, у которых множество других задач. Их список растет год от года. В него попали различные клетки крови (лимфоциты, эозинофильные лейкоциты, моноциты и тромбоциты), ползающие вне кровеносных сосудов макрофаги, клетки эндотелия (выстилки кровеносных сосудов), эпителиальные клетки тимуса, хондроциты (из хрящевой ткани), клетки амниотической жидкости и плацентарного трофобласта (той части плаценты, которая врастает в матку) и эндометрия (это из самой матки), клетки Лейдига семенников, некоторые клетки сетчатки и клетки Мер-келя, расположенные в коже вокруг волос и в эпителии подногтевого ложа, мышечные клетки. Список синтезируемых ими гормонов тоже довольно длинный.

Взять, к примеру, лимфоциты млекопитающих. Помимо положенной им продукции антител, они синтезируют мелатонин, пролактин, АКТГ (адренокортикотропный гормон) и соматотропный гормон. «Родиной» мелатонина традиционно считают эпифиз - железу, расположенную у человека в глубине мозга. Синтезируют его и клетки диффузной нейроэндокринной системы. Спектр действия мелатонина широк: он регулирует биоритмы (чем особенно знаменит), дифференцировку и деление клеток, подавляет рост некоторых опухолей и стимулирует выработку интерферона. Пролактин, вызывающий лактацию, вырабатывает передняя доля гипофиза, но в лимфоцитах он действует как фактор роста клеток. АКТГ, который также синтезируется в передней доле гипофиза, стимулирует синтез стероидных гормонов коры надпочечников, а в лимфоцитах регулирует образование антител.

А клетки тимуса, органа, в котором образуются Т-лимфоциты, синтезируют лютеинизирующий гормон (гормон гипофиза, вызывающий синтез тестостерона в семенниках и эстрогенов в яичниках). В тимусе он, вероятно, стимулирует клеточное деление.

Синтез гормонов в лимфоцитах и клетках тимуса многие специалисты рассматривают как доказательство существования связи между эндокринной и иммунной системами. Но это еще и весьма показательная иллюстрация современного состояния эндокринологии: нельзя сказать, что некий гормон синтезируется там-то и делает то-то. Мест его синтеза может быть много, функций тоже, и часто они зависят именно от места образования гормона.

Эндокринная прослойка

Иногда скопление неспецифических гормонопроизводящих клеток образует полноценный эндокринный орган, и немаленький, такой, например, как жировая ткань. Впрочем, размеры его переменны, и в зависимости от них меняются спектр «жировых» гормонов и их активность.

Жир, доставляющий современному человеку столько неприятностей, на самом деле представляет собой ценнейшее эволюционное приобретение.

В 1960-е годы американский генетик Джеймс Нил сформулировал гипотезу «бережливых генов». Согласно этой гипотезе, для ранней истории человечества, да и не только для ранней, характерны периоды продолжительного голодания. Выживали те, кто в промежутках между голодными годами успевал отъедаться, чтобы потом было чем худеть. Поэтому эволюция отбирала аллели, которые способствовали быстрому набору веса, а также склоняли человека к малой подвижности - сидючи, жир не растрясешь. (Генов, которые влияют на стиль поведения и развитие ожирения, известно уже несколько сотен.) Но жизнь изменилась, и эти внутренние запасы нам теперь не впрок, а к болезни. Избыток жира вызывает тяжкий недуг - метаболический синдром: комбинацию ожирения, устойчивости к действию инсулина, повышенного артериального давления и хронического воспаления. Пациенту с метаболическим синдромом недолго ждать сердечно-сосудистых заболеваний, диабета второго типа и множества других недугов. И все это - результат действия жировой ткани как эндокринного органа.

Основные клетки жировой ткани, адипоциты, совсем не похожи на секреторные клетки. Однако они не только запасают жир, но и выделяют гормоны. Главный из них, адипонектин, предотвращает развитие атеросклероза и общих воспалительных процессов. Он влияет на прохождение сигнала от рецептора инсулина и тем самым препятствует возникновению инсулинрезистентности. Жирные кислоты в клетках мышц и печени под его действием окисляются быстрее, активных форм кислорода становится меньше, а диабет, если он уже есть, протекает легче. Более того, адипонектин регулирует работу самих адипоцитов.

Казалось бы, адипонектин незаменим при ожирении и может предотвратить развитие метаболического синдрома. Но, увы, чем сильнее разрастается жировая ткань, тем меньше гормона она производит. Адипонектин присутствует в крови в виде тримеров и гексамеров. При ожирении тримеров становится больше, а гексамеров - меньше, хотя гексамеры гораздо лучше взаимодействуют с клеточными рецепторами. Да и само количество рецепторов при разрастании жировой ткани сокращается. Так что гормона не просто становится меньше, он еще и действует слабее, что, в свою очередь, способствует развитию ожирения. Получается порочный круг. Но его можно разорвать - похудеть килограммов на 12, не меньше, тогда количество рецепторов приходит в норму.

Еще один замечательный гормон жировой ткани - лептин. Как и адипокинетин, его синтезируют адипоциты. Лептин известен тем, что подавляет аппетит и ускоряет расщепление жирных кислот. Такого эффекта он достигает, взаимодействуя с определенными нейронами гипоталамуса, а уж дальше гипоталамус сам распоряжается. При избыточной массе тела продукция лептина увеличивается в разы, а нейроны гипоталамуса снижают к нему чувствительность, и гормон бродит по крови несвязанный. Поэтому, хотя уровень лептина в сыворотке больных ожирением повышен, люди не худеют, поскольку гипоталамус его сигналы не воспринимает. Однако рецепторы к лептину есть и в других тканях, их чувствительность к гормону остается на прежнем уровне, и они охотно реагируют на его сигналы. А лептин, между прочим, активирует симпатический отдел периферической нервной системы и повышает кровяное давление, стимулирует воспаление и способствует образованию тромбов, иными словами, вносит посильную лепту в развитие гипертонии и воспаления, свойственных метаболическому синдрому.

Развитие воспаления и устойчивость к инсулину вызывает и еще один гормон адипоцитов, резистин. Резистин представляет собой антагонист инсулина, под его действием клетки сердечной мышцы снижают потребление глюкозы и накапливают внутриклеточные жиры. А сами адипоциты под влиянием резистина синтезируют намного больше факторов воспаления: хемотаксического для макрофагов белка 1, интерлейкина-6 и фактора некроза опухоли-б (МСР-1, IL-6 и TNF-б). Чем больше резистина в сыворотке, тем выше систолическое давление, шире талия, больше риск развития сердечно-сосудистых заболеваний.

Справедливости ради надо отметить, что разрастающаяся жировая ткань стремится исправить вред, причиняемый ее гормонами. С этой целью адипоциты больных ожирением в избытке производят еще два гормона: висфатин и апелин. Правда, их синтез происходит и в других органах, в том числе в скелетных мышцах и печени. В принципе эти гормоны противостоят развитию метаболического синдрома. Висфатин действует подобно инсулину (связывается с инсулиновым рецептором) и снижает уровень глюкозы в крови, а еще очень сложным образом активирует синтез адипонектина. Но безусловно полезным этот гормон назвать нельзя, поскольку висфатин стимулирует синтез сигналов воспаления. Апелин подавляет секрецию инсулина, связываясь с рецепторами бета-клеток поджелудочной железы, понижает артериальное давление, стимулирует сокращение клеток сердечной мышцы. При уменьшении массы жировой ткани его содержание в крови снижается. К сожалению, апелин и висфатин не могут противостоять действию других адипоцитных гормонов.

Гормональная активность жировой ткани объясняет, почему избыточный вес приводит к таким серьезным последствиям. Однако недавно ученые обнаружили в организме млекопитающих эндокринный орган покрупнее. Оказывается, наш скелет вырабатывает по крайней мере два гормона. Один регулирует процессы минерализации кости, другой - чувствительность клеток к инсулину.

Кость заботится о себе

Читатели «Химии и жизни» знают, конечно, что кость живая. Ее строят остеобласты. Эти клетки синтезируют и выделяют большое количество белков, главным образом коллагена, остеокальцина и остеопонтина, создающих органический матрикс кости, который затем минерализуется. При минерализации ионы кальция связываются с неорганическими фосфатами, образуя гидроксиапатит . Окружив себя минерализованным органическим матриксом, остеобласты превращаются в остеоциты - зрелые, многоотростчатые веретенообразные клетки с крупным округлым ядром и малым количеством органелл. Остеоциты не соприкасаются с кальцинированным матриксом, между ними и стенками их «пещерок» существует зазор шириной около 0,1 мкм, а сами стенки выстланы тонким, 1–2 мкм, слоем неминерализованной ткани. Остеоциты связаны друг с другом длинными отростками, проходящими по специальным канальцам. По этим же канальцам и полостям вокруг остеоцитов циркулирует тканевая жидкость, питающая клетки.

Минерализация кости протекает нормально при соблюдении нескольких условий. Прежде всего необходима определенная концентрация кальция и фосфора в крови. Эти элементы поступают с пищей через кишечник, а выходят с мочой. Поэтому почки, фильтруя мочу, должны задерживать ионы кальция и фосфора в организме (это называется реабсорбцией).

Должное всасывание кальция и фосфора в кишечнике обеспечивает активная форма витамина D (кальцитриол). Она же влияет на синтетическую активность остеобластов. Витамин D превращается в кальцитриол под действием фермента 1б-гидроксилазы, который синтезируется главным образом в почках. Еще один фактор, влияющий на уровень кальция и фосфора в крови и активность остеобластов, - паратиреоидный гормон (ПТГ), продукт паращитовидных желез. ПТГ взаимодействует с костной, почечной и кишечной тканями и ослабляет реабсорбцию.

Но недавно ученые обнаружили еще один фактор, регулирующий минерализацию кости - белок FGF23, фактор роста фибробластов 23. (Большой вклад в эти работы внесли сотрудники фармацевтической исследовательской лаборатории пивоваренной компании «Кирин» и кафедры нефрологии и эндокринологии Токийского университета под руководством Такэёси Ямасита. Синтез FGF23 происходит в остеоцитах, а действует он на почки, контролируя уровень неорганических фосфатов и кальцитриола.

Как выяснили японские ученые, ген FGF23 (здесь и далее гены, в отличие от их белков, обозначаются курсивом) ответствен за две серьезные болезни: аутосомный доминантный гипофосфатемический рахит и остеомаляцию. Если проще, то рахит представляет собой нарушенную минерализацию растущих детских костей. А слово «гипофосфатемический» означает, что болезнь вызвана нехваткой фосфатов в организме. Остеомаляция - это деминерализация (размягчение) кости у взрослых, вызванная нехваткой витамина D. У пациентов, страдающих этими недугами, повышен уровень белка FGF23. Иногда остеомаляция возникает в результате развития опухоли, причем отнюдь не костной. В клетках таких опухолей также повышена экспрессия FGF23.

У всех больных с гиперпродукцией FGF23 понижено содержание фосфора в крови, а почечная реабсорбция ослаблена. Если бы описанные процессы находились под контролем ПТГ, то нарушение фосфорного обмена повлекло бы за собой усиленное образование кальцитриола. Но этого не происходит. При остеомаляции обоих видов концентрация кальцитриола в сыворотке остается низкой. Следовательно, в регуляции фосфорного обмена при этих заболеваниях первую скрипку играет не ПТГ, а FGF23. Как выяснили ученые, этот фермент подавляет синтез 1б-гидроксилазы в почках, поэтому и возникает нехватка активной формы витамина D.

При недостатке FGF23 картина обратная: фосфора в крови в избытке, кальцитриола тоже. Аналогичная ситуация имеет место и у мутантных мышей с повышенным уровнем белка. А у грызунов с отсутствующим геном FGF23 все наоборот: гиперфосфатизация, усиление почечной реабсорбции фосфатов, высокий уровень кальцитриола и повышенная экспрессия 1б-гидроксилазы. В результате исследователи пришли к выводу, что FGF23 регулирует фосфатный обмен и метаболизм витамина D, причем этот путь регуляции отличен от ранее известного пути с участием ПТГ.

В механизмах действия FGF23 ученые сейчас разбираются. Известно, что он сокращает экспрессию белков, отвечающих за поглощение фосфатов в почечных канальцах, а также экспрессию1б-гидроксилазы. Поскольку FGF23 синтезируется в остеоцитах, а действует на клетки почек, попадая туда через кровь, этот белок можно назвать классическим гормоном, хотя кость никто не рискнул бы назвать эндокринной железой.

Уровень гормона зависит от содержания фосфат-ионов в крови, а также от мутаций в некоторых генах, также влияющих на минеральный обмен (FGF23 ведь не единственный ген с такой функцией), и от мутаций в самом гене. Этот белок, как и всякий другой, находится в крови определенное время, а затем расщепляется специальными ферментами. Но если в результате мутации гормон приобретает устойчивость к расщеплению, его станет слишком много. А есть еще ген GALNT3, продукт которого расщепляет белок FGF23. Мутация в этом гене вызывает усиленное расщепление гормона, и при нормальном уровне синтеза больной испытывает недостаток FGF23 со всеми вытекающими последствиями. Есть белок KLOTHO, необходимый для взаимодействия гормона с рецептором. И как-то FGF23 взаимодействует с ПТГ, конечно. Исследователи предполагают, что он подавляет синтез паратиреоидного гормона, хотя до конца в этом не уверены. Но ученые продолжают работу и скоро, видимо, разберут все действия и взаимодействия FGF23 до последней косточки. Подождем.

Скелет и диабет

Безусловно, должная минерализация костей невозможна без поддержания нормального уровня кальция и фосфатов в сыворотке крови. Поэтому вполне объяснимо, что кость «лично» контролирует эти процессы. Но что ей, спрашивается, до чувствительности клеток к инсулину? Однако в 2007 году исследователи из Колумбийского университета (Нью-Йорк) под руководством Джерарда Карсенти обнаружили, к величайшему удивлению научного сообщества, что на чувствительность клеток к инсулину влияет остеокальцин. Это, как мы помним, один из ключевых белков костного матрикса, второй по значению после коллагена, а синтезируют его остеобласты. Сразу после синтеза специальный фермент карбоксилирует три остатка глутаминовой кислоты остеокальцина, то есть вводит в них карбоксильные группы. Именно в таком виде остеокальцин и включается в состав кости. Но часть молекул белка остается некарбоксилированной. Такой остеокальцин обозначают uOCN, он и обладает гормональной активностью. Процесс карбоксилирования остеокальцина усиливает остеотестикулярный белок тирозинфосфатаза (OST-PTP), понижающий, таким образом, активность гормона uOCN.

Началось с того, что американские ученые создали линию «безостеокальцинных» мышей. Синтез костного матрикса у таких животных проходил с большей скоростью, чем у обычных, поэтому кости оказались более массивными, но свои функции выполняли хорошо. У этих же мышей исследователи обнаружили гипергликемию, низкий уровень инсулина, малое количество и пониженную активность вырабатывающих инсулин бета-клеток поджелудочной железы и повышенное содержание висцерального жира. (Жир бывает подкожный и висцеральный, отложенный в брюшной полости. Количество висцерального жира зависит главным образом от питания, а не от генотипа.) Зато у мышей, дефектных по гену OST-PTP, то есть с избыточной активностью uOCN, клиническая картина обратная: слишком много бета-клеток и инсулина, повышенная чувствительность клеток к инсулину, гипогликемия, жира почти нет. После инъекций uOCN у нормальных мышей увеличивается количество бета-клеток, активность синтеза инсулина и чувствительность к нему. Уровень глюкозы приходит в норму. Так что uOCN - это гормон, который синтезируется в остеобластах, действует на клетки поджелудочной железы и мышечные клетки. И влияет он на продукцию инсулина и чувствительность к нему соответственно.

Все это было установлено на мышах, а что же люди? По данным немногочисленных клинических исследований, уровень остеокальцина положительно ассоциируется с чувствительностью к инсулину, и в крови диабетиков он значительно ниже, чем у людей, не страдающих этой болезнью. Правда, в этих исследованиях медики не различали карбоксилированный и некарбоксилированный остеокальцин. В том, какую роль играют эти формы белка в человеческом организме, еще предстоит разбираться.

Но какова роль скелета, оказывается! А мы-то думали - опора для мышц.

FGF23 и остеокальцин - классические гормоны. Они синтезируются в одном органе, а влияют на другие. Однако на их примере видно, что синтез гормонов не всегда есть специфическая функция избранных клеток. Она скорее общебиологическая и присуща любой живой клетке, независимо от ее основной роли в организме.

Стерта не только грань между эндокринными и неэндокринными клетками, само понятие «гормон» становится все более расплывчатым. Например, адреналин, дофамин и серотонин, безусловно, гормоны, но они же и нейромедиаторы, ибо действуют и через кровь, и через синапс. А адипонектин оказывает не только эндокринное действие, но и паракринное, то есть действует не только через кровь на отдаленные органы, но и через тканевую жидкость на соседние клетки жировой ткани. Так что предмет эндокринологии меняется на глазах.

Гормоны гипофиза подробно описаны в статье ГИПОФИЗ. Здесь мы лишь перечислим основные продукты гипофизарной секреции.

Гормоны передней доли гипофиза. Железистая ткань передней доли продуцирует:

– гормон роста (ГР), или соматотропин, который воздействует на все ткани организма, повышая их анаболическую активность (т.е. процессы синтеза компонентов тканей организма и увеличения энергетических запасов).

– меланоцит-стимулирующий гормон (МСГ), усиливающий выработку пигмента некоторыми клетками кожи (меланоцитами и меланофорами);

– тиреотропный гормон (ТТГ), стимулирующий синтез тиреоидных гормонов в щитовидной железе;

– фолликулостимулирующий гормон (ФСГ) и лютеинизирующий гормон (ЛГ), относящиеся к гонадотропинам: их действие направлено на половые железы (см. также РЕПРОДУКЦИЯ ЧЕЛОВЕКА) .

– пролактин, обозначаемый иногда как ПРЛ, – гормон, стимулирующий формирование молочных желез и лактацию.

Гормоны задней доли гипофиза – вазопрессин и окситоцин. Оба гормона продуцируются в гипоталамусе, но сохраняются и высвобождаются в задней доле гипофиза, лежащей книзу от гипоталамуса. Вазопрессин поддерживает тонус кровеносных сосудов и является антидиуретическим гормоном, влияющим на водный обмен. Окситоцин вызывает сокращение матки и обладает свойством «отпускать» молоко после родов.

Тиреоидные и паратиреоидные гормоны. Щитовидная железа расположена на шее и состоит из двух долей, соединенных узким перешейком (см . ЩИТОВИДНАЯ ЖЕЛЕЗА) . Четыре паращитовидных железы обычно расположены парами – на задней и боковой поверхности каждой доли щитовидной железы, хотя иногда одна или две могут быть несколько смещены.

Главными гормонами, секретируемыми нормальной щитовидной железой, являются тироксин (Т 4) и трийодтиронин (Т 3). Попадая в кровоток, они связываются – прочно, но обратимо – со специфическими белками плазмы. Т 4 связывается сильнее, чем Т 3 , и не так быстро высвобождается, а потому он действует медленнее, но продолжительнее. Тиреоидные гормоны стимулируют белковый синтез и распад питательных веществ с высвобождением тепла и энергии, что проявляется повышенным потреблением кислорода. Эти гормоны влияют также на метаболизм углеводов и, наряду с другими гормонами, регулируют скорость мобилизации свободных жирных кислот из жировой ткани. Короче говоря, тиреоидные гормоны оказывают стимулирующее действие на обменные процессы. Повышенная продукция тиреоидных гормонов вызывает тиреотоксикоз, а при их недостаточности возникает гипотиреоз, или микседема.

Другим соединением, найденным в щитовидной железе, является длительно действующий тиреоидный стимулятор. Он представляет собой гамма-глобулин и, вероятно, вызывает гипертиреоидное состояние.

Гормон паращитовидных желез называют паратиреоидным, или паратгормоном; он поддерживает постоянство уровня кальция в крови: при его снижении паратгормон высвобождается и активирует переход кальция из костей в кровь до тех пор, пока содержание кальция в крови не вернется к норме. Другой гормон – кальцитонин – оказывает противоположное действие и выделяется при повышенном уровне кальция в крови. Раньше полагали, что кальцитонин секретируется паращитовидными железами, теперь же показано, что он вырабатывается в щитовидной железе. Повышенная продукция паратгормона вызывает заболевание костей, камни в почках, обызвествление почечных канальцев, причем возможно сочетание этих нарушений. Недостаточность паратгормона сопровождается значительным снижением уровня кальция в крови и проявляется повышенной нервно-мышечной возбудимостью, спазмами и судорогами.

Гормоны надпочечников. Надпочечники – небольшие образования, расположенные над каждой почкой. Они состоят из внешнего слоя, называемого корой, и внутренней части – мозгового слоя. Обе части имеют свои собственные функции, а у некоторых низших животных это совершенно раздельные структуры. Каждая из двух частей надпочечников играет важную роль как в нормальном состоянии, так и при заболеваниях. Например, один из гормонов мозгового слоя – адреналин – необходим для выживания, так как обеспечивает реакцию на внезапную опасность. При ее возникновении адреналин выбрасывается в кровь и мобилизует запасы углеводов для быстрого высвобождения энергии, увеличивает мышечную силу, вызывает расширение зрачков и сужение периферических кровеносных сосудов. Таким образом, направляются резервные силы для «бегства или борьбы», а кроме того снижаются кровопотери благодаря сужению сосудов и быстрому свертыванию крови. Адреналин стимулирует также секрецию АКТГ (т.е. гипоталамо-гипофизарную ось). АКТГ, в свою очередь, стимулирует выброс корой надпочечников кортизола, в результате чего увеличивается превращение белков в глюкозу, необходимую для восполнения в печени и мышцах запасов гликогена, использованных при реакции тревоги.

Кора надпочечников секретирует три основные группы гормонов: минералокортикоиды, глюкокортикоиды и половые стероиды (андрогены и эстрогены). Минералокортикоиды – это альдостерон и дезоксикортикостерон. Их действие связано преимущественно с поддержанием солевого баланса. Глюкокортикоиды влияют на обмен углеводов, белков, жиров, а также на иммунологические защитные механизмы. Наиболее важные из глюкокортикоидов – кортизол и кортикостерон. Половые стероиды, играющие вспомогательную роль, подобны тем, что синтезируются в гонадах; это дегидроэпиандростерон сульфат,  4 -андростендион, дегидроэпиандростерон и некоторые эстрогены.

Избыток кортизола приводит к серьезному нарушению метаболизма, вызывая гиперглюконеогенез, т.е. чрезмерное превращение белков в углеводы. Это состояние, известное как синдром Кушинга, характеризуется потерей мышечной массы, сниженной углеводной толерантностью, т.е. сниженным поступление глюкозы из крови в ткани (что проявляется аномальным увеличением концентрации сахара в крови при его поступлении с пищей), а также деминерализацией костей.

Избыточная секреция андрогенов опухолями надпочечника приводит к маскулинизации. Опухоли надпочечника могут вырабатывать также эстрогены, особенно у мужчин, приводя к феминизации.

Гипофункция (сниженная активность) надпочечников встречается в острой или хронической форме. Причиной гипофункции бывает тяжелая, быстро развивающаяся бактериальная инфекция: она может повредить надпочечник и привести к глубокому шоку. В хронической форме болезнь развивается вследствие частичного разрушения надпочечника (например, растущей опухолью или туберкулезным процессом) либо продукции аутоантител. Это состояние, известное как аддисонова болезнь, характеризуется сильной слабостью, похуданием, низким кровяным давлением, желудочно-кишечными расстройствами, повышенной потребностью в соли и пигментацией кожи. Аддисонова болезнь,описанная в 1855 Т.Аддисоном, стала первым распознанным эндокринным заболеванием.

Адреналин и норадреналин – два основных гормона, секретируемых мозговым слоем надпочечников. Адреналин считается метаболическим гормоном из-за его влияния на углеводные запасы и мобилизацию жиров. Норадреналин – вазоконстриктор, т.е. он сужает кровеносные сосуды и повышает кровяное давление. Мозговой слой надпочечников тесно связан с нервной системой; так, норадреналин высвобождается симпатическими нервами и действует как нейрогормон.

Избыточная секреция гормонов мозгового слоя надпочечников (медуллярных гормонов) возникает при некоторых опухолях. Симптомы зависят от того, какой из двух гормонов, адреналин или норадреналин, образуется в большем количестве, но чаще всего наблюдаются внезапные приступы приливов, потливости, тревоги, сердцебиения, а также головная боль и артериальная гипертония.

Тестикулярные гормоны. Семенники (яички) имеют две части, являясь железами и внешней, и внутренней секреции. Как железы внешней секреции они вырабатывают сперму, а эндокринную функцию осуществляют содержащиеся в них клетки Лейдига, которые секретируют мужские половые гормоны (андрогены), в частности  4 -андростендион и тестостерон, основной мужской гормон. Клетки Лейдига вырабатывают также небольшое количество эстрогена (эстрадиола).

Семенники находятся под контролем гонадотропинов (см. выше раздел ГОРМОНЫ ГИПОФИЗА). Гонадотропин ФСГ стимулирует образование спермы (сперматогенез). Под влиянием другого гонадотропина, ЛГ, клетки Лейдига выделяют тестостерон. Сперматогенез происходит только при достаточном количестве андрогенов. Андрогены, в частности тестостерон, ответственны за развитие вторичных половых признаков у мужчин.

Нарушение эндокринной функции семенников сводится в большинстве случаев к недостаточной секреции андрогенов. Например, гипогонадизм – это снижение функции семенников, включая секрецию тестостерона, сперматогенез или и то, и другое. Причиной гипогонадизма может быть заболевание семенников, либо – опосредованно – функциональная недостаточность гипофиза.

Повышенная секреция андрогенов встречается при опухолях клеток Лейдига и приводит к чрезмерному развитию мужских половых признаков, особенно у подростков. Иногда опухоли семенников вырабатывают эстрогены, вызывая феминизацию. В случае редкой опухоли семенников – хориокарциномы – продуцируется столько хорионических гонадотропинов, что анализ минимального количества мочи или сыворотки дает те же результаты, что и при беременности у женщин. Развитие хориокарциномы может привести к феминизации.

Гормоны яичников. Яичники имеют две функции: развитие яйцеклеток и секреция гормонов (см. также РЕПРОДУКЦИЯ ЧЕЛОВЕКА) . Гормоны яичников – это эстрогены, прогестерон и  4 -андростендион. Эстрогены определяют развитие женских вторичных половых признаков. Эстроген яичников, эстрадиол, вырабатывается в клетках растущего фолликула – мешочка, который окружает развивающуюся яйцеклетку. В результате действия как ФСГ, так и ЛГ, фолликул созревает и разрывается, высвобождая яйцеклетку. Разорванный фолликул превращается затем в т.н. желтое тело, которое секретирует как эстрадиол, так и прогестерон. Эти гормоны, действуя совместно, готовят слизистую матки (эндометрий) к имплантации оплодотворенной яйцеклетки. Если оплодотворения не произошло, желтое тело подвергается регрессии; при этом прекращается секреция эстрадиола и прогестерона, а эндометрий отслаивается, вызывая менструацию.

Хотя яичники содержат много незрелых фолликулов, во время каждого менструального цикла созревает обычно только один из них, высвобождающий яйцеклетку. Избыток фолликулов подвергается обратному развитию на протяжении всего репродуктивного периода жизни женщины. Дегенерирующие фолликулы и остатки желтого тела становятся частью стромы – поддерживающей ткани яичника. При определенных обстоятельствах специфические клетки стромы активируются и секретируют предшественник активных андрогенных гормонов –  4 -андростендион. Активация стромы возникает, например, при поликистозе яичников – болезни, связанной с нарушением овуляции. В результате такой активации продуцируется избыток андрогенов, что может вызвать гирсутизм (резко выраженную волосатость).

Пониженная секреция эстрадиола имеет место при недоразвитии яичников. Функция яичников снижается и в менопаузе, так как запас фолликулов истощается и как следствие падает секреция эстрадиола, что сопровождается целым рядом симптомов, наиболее характерным из которых являются приливы. Избыточная продукция эстрогенов обычно связана с опухолями яичников. Наибольшее число менструальных расстройств вызвано дисбалансом гормонов яичников и нарушением овуляции.

Гормоны плаценты человека. Плацента – пористая мембрана, которая соединяет эмбрион (плод) со стенкой материнской матки. Она секретирует хорионический гонадотропин и плацентарный лактоген человека. Подобно яичникам плацента продуцирует прогестерон и ряд эстрогенов.

Хорионический гонадотропин (ХГ ). Имплантации оплодотворенной яйцеклетки способствуют материнские гормоны – эстрадиол и прогестерон. На седьмой день после оплодотворения человеческий зародыш укрепляется в эндометрии и получает питание от материнских тканей и из кровотока. Отслоение эндометрия, которое вызывает менструацию, не происходит, потому что эмбрион секретирует ХГ, благодаря которому сохраняется желтое тело: вырабатываемые им эстрадиол и прогестерон поддерживают целость эндометрия. После имплантации зародыша начинает развиваться плацента, продолжающая секретировать ХГ, который достигает наибольшей концентрации примерно на втором месяце беременности. Определение концентрации ХГ в крови и моче лежит в основе тестов на беременность.

Плацентарный лактоген человека (ПЛ ). В 1962 ПЛ был обнаружен в высокой концентрации в ткани плаценты, в оттекающей от плаценты крови и в сыворотке материнской периферической крови. ПЛ оказался сходным, но не идентичным с гормоном роста человека. Это мощный метаболический гормон. Воздействуя на углеводный и жировой обмен, он способствует сохранению глюкозы и азотсодержащих соединений в организме матери и тем самым обеспечивает снабжение плода достаточным количеством питательных веществ; одновременно он вызывает мобилизацию свободных жирных кислот – источника энергии материнского организма.

Прогестерон. Во время беременности в крови (и моче) женщины постепенно возрастает уровень прегнандиола, метаболита прогестерона. Прогестерон секретируется главным образом плацентой, а основным его предшественником служит холестерин из крови матери. Синтез прогестерона не зависит от предшественников, продуцируемых плодом, судя по тому, что он практически не снижается через несколько недель после смерти зародыша; синтез прогестерона продолжается также в тех случаях, когда у пациенток с брюшной внематочной беременностью произведено удаление плода, но сохранилась плацента.

Эстрогены. Первые сообщения о высоком уровне эстрогенов в моче беременных появились в 1927, и вскоре стало ясно, что такой уровень поддерживается только при наличии живого плода. Позже было выявлено, что при аномалии плода, связанной с нарушением развития надпочечников, содержание эстрогенов в моче матери значительно снижено. Это позволило предположить, что гормоны коры надпочечников плода служат предшественниками эстрогенов. Дальнейшие исследования показали, что дегидроэпиандростерон сульфат, присутствующий в плазме крови плода, является основным предшественником таких эстрогенов, как эстрон и эстрадиол, а 16-гидроксидегидроэпиандростерон, также эмбрионального происхождения, – основной предшественник еще одного продуцируемого плацентой эстрогена, эстриола. Таким образом, нормальное выделение эстрогенов с мочой при беременности определяется двумя условиями: надпочечники плода должны синтезировать предшественники в нужном количестве, а плацента – превращать их в эстрогены.

Гормоны поджелудочной железы. Поджелудочная железа осуществляет как внутреннюю, так и внешнюю секрецию. Экзокринный (относящийся к внешней секреции) компонент – это пищеварительные ферменты, которые в форме неактивных предшественников поступают в двенадцатиперстную кишку через проток поджелудочной железы. Внутреннюю секрецию обеспечивают островки Лангерганса, представленные клетками нескольких типов: альфа-клетки секретируют гормон глюкагон, бета-клетки – инсулин. Основное действие инсулина заключается в понижении уровня глюкозы в крови, осуществляемое главным образом тремя способами: 1) торможением образования глюкозы в печени; 2) торможением в печени и мышцах распада гликогена (полимера глюкозы, который организм при необходимости может превращать в глюкозу); 3) стимуляцией использования глюкозы тканями. Недостаточная секреция инсулина или повышенная его нейтрализация аутоантителами приводят к высокому уровню глюкозы в крови и развитию сахарного диабета. Главное действие глюкагона – увеличение уровня глюкозы в крови за счет стимулирования ее продукции в печени. Хотя поддержание физиологического уровня глюкозы в крови обеспечивают в первую очередь инсулин и глюкагон, другие гормоны – гормон роста, кортизол и адреналин – также играют существенную роль.

Желудочно-кишечные гормоны. Гормоны желудочно-кишечного тракта – гастрин, холецистокинин, секретин и панкреозимин. Это полипептиды, секретируемые слизистой оболочкой желудочно-кишечного тракта в ответ на специфическую стимуляцию. Полагают, что гастрин стимулирует секрецию соляной кислоты; холецистокинин контролирует опорожнение желчного пузыря, а секретин и панкреозимин регулируют выделение сока поджелудочной железы.

Нейрогормоны – группа химических соединений, секретируемых нервными клетками (нейронами). Эти соединения обладают гормоноподобными свойствами, стимулируя или подавляя активность других клеток; они включают упомянутые ранее рилизинг-факторы, а также нейромедиаторы, функции которых заключается в передаче нервных импульсов через узкую синаптическую щель, отделяющую одну нервную клетку от другой. К нейромедиаторам относятся дофамин, адреналин, норадреналин, серотонин, гистамин, ацетилхолин и гамма-аминомасляная кислота.

В середине 1970-х годов был открыт ряд новых нейромедиаторов, обладающих морфиноподобным обезболивающим действием; они получили название «эндорфины», т.е. «внутренние морфины». Эндорфины способны связываться со специальными рецепторами в структурах головного мозга; в результате такого связывания в спинной мозг посылаются импульсы, которые блокируют проведение поступающих болевых сигналов. Болеутоляющее действие морфина и других опиатов несомненно обусловлено их сходством с эндорфинами, обеспечивающим их связывание с теми же блокирующими боль рецепторами.

Возникновение неполадок в функционировании организма некоторые люди стараются устранить самостоятельно, не прибегая к помощи врачей. Однако такое самолечение способно негативно сказаться на дальнейшем состоянии здоровья. Ведь нарушение в работе того или иного органа возникает в процессе недостаточной или избыточной выработки гормонов.

Впрочем, об этих веществах каждый человек наслышан с детства. Между тем, ученые продолжают изучать строение этих веществ и функции, которые они выполняют. Что такое гормоны, для чего нужны они человеку, какие виды гормонов существуют, и какое влияние они на него оказывают?

Что такое гормоны

Гормоны являются биологически активными веществами. Их выработка происходит в специализированных клетках желез внутренней секреции. В переводе с древнегреческого языка слово «гормоны» означает «побуждать» или «возбуждать».

Именно это действие и является их основной функцией: вырабатываясь в одних клетках, данные вещества побуждают клетки других органов к действию, посылая им сигналы. То есть в организме человека гормоны играют роль своеобразного механизма, запускающего все процессы жизнедеятельности, которые не могут существовать отдельно.

Чтобы осознать их значение, необходимо понимать, где они образуются. Основными источниками выработки гормонов являются следующие внутренние железы:

  • гипофиз;
  • щитовидная и паращитовидная железы;
  • надпочечники;
  • поджелудочная железа;
  • яички у мужчин и яичники у женщин.

Участвовать в образовании этих веществ могут и некоторые внутренние органы, к которым относятся:

  • печень;
  • почки;
  • плацента в период беременности;
  • шишковидная железа, расположенная в мозге;
  • желудочно-кишечный тракт;
  • тимус или вилочковая железа, активно развивающаяся до наступления половой зрелости, и уменьшающаяся в размерах с возрастом.

Гипоталамус – это небольшой отросток головного мозга, являющийся координатором выработки гормонов.

Как работают гормоны

Разобравшись, что такое гормоны, можно приступать к изучению того, как они действуют.

Каждый гормон воздействует на определенные органы, называемые органами-мишенями. При этом у каждого из гормонов имеется своя химическая формула, которая и предопределяет, какой из органов станет мишенью. Стоит заметить, что мишенью может являться не один орган, а несколько.

В отличие от нервной системы, передающей импульсы через нервы, гормоны поступают в кровь. На органы-мишени они воздействуют через клетки, снабженные особыми рецепторами, способными воспринимать только определенные гормоны. Их взаимосвязь подобна замку с ключом, где в качестве замка выступает клетка-рецептор, открываемая ключом-гормоном.

Прикрепляясь к рецепторам, гормоны проникают во внутренние органы, где при помощи химического воздействия заставляют их выполнять определенные функции.

Активное изучение гормонов и желез, их вырабатывающих, началось в 1855 году. В этот период английский врач Т.Аддисон впервые описал бронзовую болезнь, развивающуюся вследствие нарушения функций надпочечников.

Интерес к данной науке проявляли и другие врачи, к примеру, К.Бернар из Франции, изучавший процессы образования и выделения в кровь секреции. Предметом его изучения являлись и органы, их выделявшие.

А французскому врачу Ш.Броун-Секару удалось найти взаимосвязь между различными заболеваниями и снижением функции желез внутренней секреции. Именно он впервые доказал, что многие заболевания могут излечиваться с помощью средств, приготавливаемых из экстрактов желез.

В 1899 году английским ученым удалось открыть гормон секретин, вырабатываемый двенадцатиперстной кишкой. Чуть позже они дали ему название гормон, которое и положило начало современной эндокринологии.

До сих пор ученые не смогли изучить о гормонах все, продолжая делать новые открытия.

Разновидности гормонов

Гормоны бывают нескольких видов, различаемых по химическому составу.

  • Стероиды. Данные гормоны вырабатываются в яичках и яичниках из холестерина. Эти вещества выполняют важнейшие функции, позволяющие человеку развиваться и обретать необходимую физическую форму, украшающую тело, а также воспроизводить на свет потомство. К стероидам относятся прогестерон, андроген, эстрадиол и дигидротестостерон.
  • Производные жирных кислот. Эти вещества действуют на клетки, находящиеся рядом с теми органами, которые участвуют в их производстве. К числу этих гормонов относятся лейкотриены, тромбоксаны и простогландины.
  • Производные аминокислот. Эти гормоны вырабатываются несколькими железами, в том числе надпочечниками и щитовидной железой. А основой для их производства является тирозин. Представителями этого вида являются адреналин, норадреналин, мелатонин, а также тироксин.
  • Пептиды. Эти гормоны несут ответственность за осуществление обменных процессов в организме. А важнейшим компонентом для их выработки является белок. К пептидам относятся инсулин и глюкагон, вырабатываемые поджелудочной железой, и гормон роста, образующийся в гипофизе.

Роль гормонов в организме человека

Весь жизненный путь человеческий организм вырабатывает гормоны. Они оказывают влияние на любые процессы, которые происходят с человеком.

  • Благодаря данным веществам каждый человек имеет определенный рост и вес.
  • Гормоны оказывают влияние на эмоциональное состояние человека.
  • На протяжении всей жизни гормоны стимулируют естественный процесс роста и распада клеток.
  • Они участвуют в формировании иммунной системы, стимулируя, либо угнетая ее.
  • Вещества, вырабатываемые железами внутренней секреции, контролируют обменные процессы в организме.

  • Под действием гормонов организм легче переносит физические нагрузки и стрессовые ситуации. Для этих целей вырабатывается гормон активных действий – адреналин.
  • При содействии биологически активных веществ происходит подготовка к определенному жизненному этапу, в том числе к половому созреванию и родам.
  • Определенные вещества контролируют репродуктивный цикл.
  • Ощущение голода и сытости человек испытывает также под действием гормонов.
  • При нормальной выработке гормонов и их функции усиливается половое влечение, а при уменьшении их концентрации в крови либидо снижается.

Основные гормоны человека на протяжении всей жизни обеспечивают стабильность работы организма.

Влияние гормонов на организм человека

Под действием некоторых факторов стабильность процесса может нарушаться. Их примерный список выглядит следующим образом:

  • возрастные изменения в организме;
  • различные заболевания;
  • стрессовые ситуации;
  • изменение климатических условий;
  • неблагополучная экологическая обстановка.

В организме мужчин выработка гормонов более стабильна, нежели у женщин. В женском организме количество секретируемых гормонов изменяется в зависимости от различных факторов, в том числе фазы менструального цикла, беременности, родов и менопаузы.

О том, что мог образоваться гормональный дисбаланс, говорят следующие признаки:

  • общая слабость организма;
  • судороги в конечностях;
  • головная боль и звон в ушах;
  • потливость;
  • нарушение координации движений и замедление реакции;
  • ухудшение памяти и провалы;
  • резкая смена настроения и депрессивные состояния;
  • беспричинное снижение или повышение массы тела;
  • растяжки на коже;
  • нарушение работы органов пищеварения;
  • рост волос в местах, где их быть не должно;
  • гигантизм и нанизм, а также акромегалия;
  • проблемы с кожей, в том числе повышение жирности волос, угри и перхоть;
  • нарушения менструального цикла.

Как определяется уровень гормонов

Если какое-либо из этих состояний проявляется систематически, необходимо обратиться к эндокринологу. Только врач на основании анализа сможет определить, какие гормоны вырабатываются в недостаточном или избыточном количестве, и назначить адекватное лечение. При этом определение уровня всех возможных гормонов не требуется, так как опытный врач определит вид необходимого исследования на основании жалоб пациента.

Зачем назначается анализ крови на содержание гормонов? Он необходим для подтверждения или исключения какого-либо диагноза.

При необходимости назначаются анализы, которые определяют концентрацию в крови гормонов, выделяемых следующими железами внутренней секреции:

  • гипофиза;
  • щитовидной железы;
  • надпочечников;
  • яичек у мужчин и яичников у женщин.

Женщинам в качестве дополнительного обследования может назначаться пренатальная диагностика, позволяющая выявить патологии в развитии плода на ранних сроках беременности.

Наиболее популярным анализом крови является определение базального уровня определенного типа гормона. Такое обследование проводят утром натощак. Но уровень большинства веществ склонен меняться в течение суток. Как пример, можно привести соматотропин – гормон, стимулирующий рост. Поэтому его концентрация исследуется в течение суток.

Если же проводится исследование гормонов желез внутренней секреции, зависящих от гипофиза, проводится анализ, определяющий уровень гормона, вырабатываемого эндокринной железой, и гормона гипофиза, заставляющего данную железу его вырабатывать.

Как достичь гормонального баланса

При легком гормональном дисбалансе показана корректировка образа жизни:

  • Соблюдение режима дня. Полноценная работа систем организма возможна лишь при создании баланса между работой и отдыхом. К примеру, выработка соматотропина усиливается через 1-3 часа после засыпания. При этом ложиться спать рекомендуется не позднее 23 часов, а продолжительность сна должна составлять не менее 7 часов.
  • Стимулировать выработку биологически активных веществ позволяет физическая активность. Поэтому 2-3 раза в неделю необходимо заниматься танцами, аэробикой или повышать активность другими способами.

  • Сбалансированное питание с увеличением количества потребления белка и уменьшением количества жира.
  • Соблюдение питьевого режима. В течение дня необходимо выпивать 2-2,5 литра воды.

Если же требуется более интенсивное лечение, изучается таблица гормонов, и применяются медицинские препараты, которые содержат их синтетические аналоги. Однако назначать их вправе только специалист.

⚕️Мелихова Ольга Александровна — врач эндокринолог, стаж 2 года.

Занимается вопросами профилактики, диагностики и лечения заболеваний органов эндокринной системы: щитовидной железы, поджелудочной железы, надпочечников, гипофиза, половых желез, паращитовидных желез, вилочковой железы и т.д.