Домой / Мочеточники / Чем осуществляется нервная регуляция. Осуществляет гуморальную регуляцию процессов жизнедеятельности

Чем осуществляется нервная регуляция. Осуществляет гуморальную регуляцию процессов жизнедеятельности

Физиологической регуляцией называется управление функциями организма с целью его приспособления к условиям внешней среды. Регуляция функций организма является основой обеспечения постоянства внутренней среды организма и его адаптации к изменяющимся условиям существования и осуществляется по принципу саморегуляции путем формирования функциональных систем. Функцией систем и организма в целом называется деятельность, направленная на сохранение целостности и свойств системы. Функции характеризуются количественно и качественно. Основой физиологической регуляции является передача и обработка информации. Под термином "информация" понимается любое сообщение о фактах и событиях, происходящих в окружающей среде и организме человека. Под саморегуляцией понимают такой вид регуляции, когда отклонение регулируемого параметра является стимулом для его восстановления. Для осуществления принципа саморегуляции необходимо взаимодействие следующих компонентов функциональных систем.

Регулируемый параметр (объект регуляции, константа).

Аппараты контроля, следящие за отклонением данного параметра под воздействием внешних и внутренних факторов.

Аппараты регуляции, обеспечивающие направленное действие на деятельность органов, от которых зависит восстановление отклонившегося параметра.

Аппараты исполнения - органы и системы органов, изменение деятельности которых в соответствии с регуляторными влияниями приводит к восстановлению исходной величины параметра. "Обратная афферентация несет информацию в аппараты регуляции о достижении или не достижении полезного результата, о возвращении или невозвращении отклонившегося параметра к норме. Таким образом регуляция функций осуществляется системой, которая состоит из отдельных элементов: управляющего устройства (ЦНС, эндокринная клетка), каналов связи (нервы, жидкая внутренняя среда), датчиков, воспринимающих действие факторов внешней и внутренней среды (рецепторы), структур, воспринимающих информацию выходных каналов (рецепторы клеток) и исполнительных органов.

Система регуляции в организме представляет трехуровневую структуру. Первый уровень регуляции состоит из относительно автономных локальных систем, поддерживающих константы. Второй уровень системы регуляции обеспечивает приспособительные реакции в связи с изменениями внутренней среды, на этом уровне обеспечивается оптимальный режим работы физиологических систем для адаптации организма к внешней среде. Третий уровень регуляции реализуется поведенческими реакциями организма и обеспечивает оптимизацию его жизнедеятельности.

Различают четыре вида регуляции: механическую, гуморальную, нервную, нервно-гуморальную.

Физическая (механическая) регуляция реализуется через механические, электрические, оптические, звуковые, электромагнитные, тепловые и другие процессы (например, заполнение дополнительным объемом крови полостей сердца приводит к большей степени растяжения их стенок и к более сильному сокращению миокарда). Наиболее надежными механизмами регуляции являются местные. Они реализуются путем физико-химического взаимодействия структур органа. Например, в работающей мышце в результате выделения миоцитами химических метаболитов и тепла происходит расширение кровеносных сосудов, что сопровождается возрастанием объемной скорости кровотока и увеличением снабжения миоцитов питательными веществами и кислородом. Местная регуляция может осуществляться с помощью биологически активных веществ (гистамин), тканевых гормонов (простагландины).

Гуморальная регуляция осуществляется через жидкие среды организма (кровь (гумор), лимфу, межклеточную, цереброспинальную жидкости) с помощью различных биологически активных веществ, которые выделяются специализированными клетками, тканями или органами. Этот вид регуляции может осуществляться на уровне структур органа - местная саморегуляция, или обеспечивать генерализованные эффекты через систему гормональной регуляции. В кровь поступают химические вещества, образующиеся в специализированных тканях и обладающих специфическими функциями. Среди этих веществ различают: метаболиты, медиаторы, гормоны. Они могут действовать местно или дистантно. Например, продукты гидролиза АТФ, концентрация которых возрастает при повышении функциональной активности клеток, вызывают расширение кровеносных сосудов и улучшают трофику этих клеток. Особенно важную роль играют гормоны- продукты секреции специальных, эндокринных органов. К железам внутренней секреции относят: гипофиз, щитовидную и околощитовидные железы, островковый аппарат поджелудочной железы, кору и мозговое вещество надпочечников, половые железы, плаценту и эпифиз. Гормоны влияют на обмен веществ, стимулируют морфообразовательные процессы, дифференцировку, рост, метаморфоз клеток, включают определенную деятельность исполнительных органов, изменяют интенсивность деятельности исполнительных органов и тканей. Гуморальный путь регуляции действует относительно медленно, скорость ответной реакции зависит от скорости образования и секреции гормона, его проникновения в лимфу и кровь, скорости кровотока. Локальное действие гормона определяется наличием к нему специфического рецептора. Длительность действия гормона зависит от скорости его разрушения в организме. В различных клетках организма, в том числе и мозге, образуются нейропептиды, которые действуют на поведение организма, целый ряд различных функций и регулируют секрецию гормонов.

Нервная регуляция осуществляется посредством нервной системы, базируется на переработке информации нейронами и передаче ее по нервам. Имеет следующие особенности:

Большую скорость развития действия;

Точность связи;

Высокую специфичность - в реакции участвует строго определенное количество компонентов, необходимых в данный момент.

Нервная регуляция осуществляется быстро, с направленностью сигнала к определенному адресату. Передача информации (потенциалов действия нейронов) осуществляется со скоростью до 80-120 м/с без снижения амплитуды и потери энергии. Нервной регуляции подлежат соматические и вегетативные функции организма. Основной принцип нервной регуляции - рефлекс. Нервный механизм регуляции филогенетически возник позднее местного и гуморального и обеспечивает высокую точность, скорость и надежность ответной реакции. Он является наиболее совершенным механизмом регуляции.

Нервно-гуморальная корреляция. В процессе эволюции произошло объединение нервного и гуморального видов корреляций в нервно-гуморальную форму, когда экстренное вовлечение в процесс действия органов путем нервной корреляции дополняется и пролонгируется гуморальными факторами.

Нервная и гуморальная корреляции играют ведущую роль в объединении (интеграции) составных частей (компонентов) организма в единое целоеорганизм. При этом они как бы дополняют друг друга своими особенностями. Гуморальная связь имеет генерализованный характер. Она одновременно реализуется во всем организме. Нервная связь имеет направленный характер, она наиболее избирательна и реализуется в каждом конкретном случае преимущественно на уровне определенных компонентов организма.

Креаторные связи обеспечивают обмен между клетками макромолекулами, которые способны оказать регуляторное влияние на процессы метаболизма, дифференцировки, роста, развития, функционирования клеток, тканей. Через креаторные связи осуществляется влияние кейлонов - белков, подавляющих синтез нуклеиновых кислот и деление клеток.

Метаболиты по механизму обратной связи оказывают влияние на внутриклеточный обмен и функции клеток и на функционирование рядом расположенных структур. Например, при интенсивной мышечной работе молочная и пировиноградная кислоты, образующиеся в мышечной клетке в условиях дефицита кислорода, ведут к расширению микрососудов мышцы, к увеличению притока крови, питательных веществ и кислорода, что улучшает питание мышечных клеток. Одновременно они стимулируют метаболические пути их использования, снижают сократительную способность мышцы.

Нейроэндокринная система обеспечивает соответствие метаболических, физических функций и поведенческих реакций организма условиям внешней среды, поддерживает процессы дифференциации, роста, развития, регенерации клеток; в целом способствуют сохранению и развитию как индивидуума, так и биологического вида в целом. Двойная (нервная и эндокринная) регуляция обеспечивает через механизм дублирования надёжность регуляции, высокую скорость ответа через нервную систему и длительность ответа во времени через выделение гормонов. Филогенетически наиболее древние гормоны вырабатываются нервными клетками, химический сигнал и нервный импульс часто взаимопревращаемы. Гормоны, будучи нейромодуляторами, оказывают влияние на эффекты в ЦНС многих медиаторов (гастрин, холецистокинин, ВИП, ГИП, нейротензин, бомбезин, субстанция Р, опиомеланокортины - АКТГ, бета-, гамма-липотропины, альфа-, бета-, гамма-эндорфины, пролактин, соматотропин). Описаны гормон продуцирующие нейроны.

В основе нервной и гуморальной регуляции лежит принцип кольцевой связи, который в биологических системах был приоритетно показан советским физиологом П.К.Анохиным. Положительные и отрицательные обратные связи обеспечивают оптимальный уровень функционирования - усиление слабых ответов и ограничение сверхсильных.

Деление механизмов регуляции на нервные и гуморальные является условным. В организме эти механизмы неразделимы.

1) Информация о состоянии внешней и внутренней среды, как правило, воспринимается элементами нервной системы, и после обработки в нейронах в качестве исполнительных органов могут использоваться как нервный, так и гуморальный путь регуляции.

2) Деятельность желез внутренней секреции управляется нервной системой. В свою очередь, метаболизм, развитие и дифференцировка нейронов осуществляется под влиянием гормонов.

3) Потенциалы действия в местах контакта нейрона и рабочей клетки вызывают секрецию медиатора, который через гуморальное звено изменяет функцию клетки. Таким образом, в организме существует единая нейрогуморальная регуляция с приоритетным значением нервной системы. Организм на действие каждого раздражителя отвечает сложной биологической реакцией как единое целое. Это достигается взаимо­действием всех систем, тканей и клеток организма. Взаимодействие обеспечивается местными, гуморальными и нервными механизмами регуляции

Нервная система человека делится на центральную (головной и спинной мозг) и периферическую. Центральная нервная система обеспечивает индивидуальное приспособление организма к среде обитания, адаптацию организма, поведение организма в соответствии с конституцией и его потребностями, обеспечивает интеграцию и объединение органов в единое целое на основе восприятия, оценки, сравнения, анализа информации, поступающей из внешней и внутренней среды организма. Периферическая нервная система обеспечивает трофику тканей и оказывает непосредственное влияние на структуру и функциональную активность органов.

  • 2.2. Организм человека как единая саморазвивающаяся и саморегулируемая биологическая система. Воздействие внешней среды на организм человека
  • 2.3. Физическая и умственная деятельность человека. Утом­ление и переутомление при физической и умственной работе
  • 2.3.1. Основные факторы производственной среды и их неблагоприятное влияние на организм человека
  • 2.3.2. Средства физической культуры, обеспечивающие устой­чивости к физической и умственной нагрузке
  • 2.4. Совершенствование обмена веществ под воздействием на­правленной физической тренировки
  • 2.5. Воздействие физической тренировки на кровь и кровенос­ную систему
  • 2.5.1. Кровь
  • 2.5.2. Кровеносная система
  • 2.5.3. Сердце
  • 2.5.4. Мышечный насос
  • 2.6. Физическая тренировка и функция дыхания. Рекоменда­ции по дыханию при занятиях физическими упражнениями и спортом
  • 2.7. Двигательная активность и функции пищеварения, выделения, терморегуляции и желез внутренней секреции
  • 2.8. Опорно-двигательный аппарат
  • 2.8.1. Кости, суставы и двигательная активность
  • 2.8.2. Мышечная система и ее функции
  • 2.9. Сенсорные системы
  • 2.10. Нервная и гуморальная регуляция деятельности организма
  • 2.10.1. Рефлекторная природа и рефлекторные механизмы дви­гательной деятельности
  • 2.10.2. Образование двигательного навыка
  • 2.10.3 Аэробные, анаэробные процессы
  • 2.10.4 Физиологическая характеристика двигательной деятельности
  • 2.11. Выводы
  • 2.12. Контрольные вопросы
  • Тема3. Основы здорового образа жизни студента Роль физической культуры в обеспечении здоровья Глава 1. Основные понятия
  • Глава2. Факторы влияющие на здоровье современного человека.
  • 2.1. Влияние состояния окружающей среды
  • 2.2. Генетические факторы.
  • 2.3. Деятельность учреждений здравоохранения
  • 2.4. Условия и образ жизни людей
  • Глава 3. Факторы укрепления здоровья.
  • Глава 4. Функциональные проявления здоровья в различных сферах жизнедеятельности.
  • Глава 5. Адаптационные процессы и здоровье
  • Глава 6. Содержательные характеристики составляющих здорового образа жизни
  • 6.1. Режим труда и отдыха.
  • 6.2. Организация сна
  • 6.3. Организация режима питания.
  • 6.4. Организация двигательной активности.
  • 6.5. Личная гигиена и закаливание
  • 6.6. Гигиенические основы закаливания
  • Закаливание воздухом.
  • Закаливание солнцем
  • Закаливание водой.
  • 6.7. Профилактика вредных привычек
  • 6.8. Психофизическая регуляция организма.
  • Контрольные вопросы
  • Литература:
  • Тема 4. Физические качества и методика их развития
  • Глава 1. Воспитание физических качеств
  • Воспитание силы. Основные понятия
  • 1.2. Воспитание быстроты
  • Воспитание быстроты простой и сложной двигательной реакции
  • 1.3. Воспитание выносливости
  • 1.4. Воспитание ловкости (шардинационнои способности)
  • 1.5. Воспитание гибкости
  • Контрольные вопросы
  • Тема 5. Обще физическая, специальная и спортивная подготовка в системе физического воспитания часть первая
  • Глава 1. Методические принципы физического воспитания.
  • Глава 2. Средства и методы физического воспитания
  • 2.1. Средства физического воспитания
  • 2.2. Методы физического воспитания
  • Глава 3. Основы обучения движениям. Этапы обучения движениям
  • Глава 4. Воспитание физических качеств
  • Глава 5. Формирование психических качеств, черт, свойств личности в процессе физического воспитания
  • Контрольные вопросы
  • Глава 7. Специальная физическая подготовка
  • Глава 8. Спортивная подготовка
  • Глава 9. Интенсивность физических нагрузок
  • Глава 10. Значение мышечной релаксации (расслабления)
  • Глава 11. Коррекция физического развития телосложения, двигательной и функциональной подготовленности средствами физической культуры и спорта
  • 11.1. Коррекция физического развития
  • 11.2. Коррекция двигательной и функциональной подготовленности
  • Глава 12. Формы занятий физическими упражнениями
  • Глава 13. Построение и структура учебно-тренировочного занятия
  • Глава 14. Общая и моторная плотность занятия
  • Контрольные вопросы
  • Тема 7. Спортивная тренировка
  • Глава 1. Основные понятия
  • Глава 2. Сущность спортивной тренировки, ее задачи
  • Глава 3. Методические принципы спортивной тренировки
  • Глава 4. Методы спортивной тренировки
  • 4.1. Методы строго регламентированного упражнения
  • 4.1.1. Обучение двигательным действиям
  • 4.1.2. Воспитание физических качеств
  • 4.2. Игровой метод
  • 4.3. Соревновательный метод
  • 4.4. Методы словесного и наглядного (сенсорного) воздействия
  • 4.5. Структура учебно-тренировочного занятия
  • 4.5.1. Вводная часть занятия
  • 4.5.2. Подготовительная часть занятия (разминка)
  • 4.5.3. Основная часть занятия
  • 4.5.4. Заключительная часть занятия
  • 4.5.5. Динамика физической нагрузки
  • 4.5.6. Интенсивность физических нагрузок. Зоны интенсивно­сти нагрузок по частоте сердечных сокращений
  • Глава 5. Воспитание физических качеств
  • Глава 6. Разделы (стороны) спортивной подготовки
  • Глава 7. Планирование учебно-тренировочного процесса
  • Глава 8. Выводы
  • Контрольные вопросы
  • Тема 8. Врачебный контроль и самоконтроль занимающихся физическими упражнениями и спортом
  • Глава 1. Основные понятия
  • Глава 2. Организация врачебного контроля
  • 2.1. Медицинское обследование занимающихся
  • 2.2. Медицинское обеспечение физического воспитания сту­дентов
  • 2.3. Врачебно-педагогические наблюдения за занимающимися во время занятий
  • 2.4. Профилактика травматизма, заболеваний и отрица­тельных реакций организма при занятиях физическими упражнениями и спортом
  • Глава 3. Методы определения и оценки состояния функциональных систем организма и тренированности занимающихся Функциональные пробы и тесты
  • 3.1. Сердечно-сосудистая система. Физическая работоспособ­ность
  • Определение физической работоспособности
  • 3.2. Дыхательная система
  • Пробы с задержкой дыхания
  • 3.3. Нервно-мышечная система
  • 3.4. Опорно-двигательный аппарат
  • 3.5. Анализаторы
  • Исследование вестибулярного аппарата
  • 3.1. Самоконтроль при занятиях физическими упражнениями и спортом
  • 3.1.1. Субъективные и объективные показатели самоконтроля
  • 3.1.2. Самоконтроль за физическим развитием
  • 3.1.3. Самоконтроль за функциональным состоянием
  • 3.1.4. Самоконтроль за физической подготовленностью
  • 3.1.5. Самоконтроль за тренированностью
  • 3.1.6. Ведение дневника самоконтроля
  • Приложение к теме: Врачебный контроль и самоконтроль занимающихся физическими упражнениями и спортом
  • 4 Возрастных этапа:
  • Астенический, гиперстеническии и нормостеническии тип телосложения
  • Сколиоз, лордоз
  • Антропометрические стандарты (среднее квадратическое отклонение, корреляция,индексы)
  • Проба Ромберга /статическая координация/
  • Симпатический и парасимпатический отделы вегетативной нервной системы
  • Глазно-сердечный рефлекс; кожно-сосудистые реакции
  • Изменение систематического объема кровообращения при физической нагрузке
  • Изменение артериального давления при физической нагрузке
  • Физиологические обоснования улучшения умственной деятельности под воздействием физических упражнений
  • Жизненная емкость легких
  • Функциональные пробы в диагностике физической работоспособности и тренированности
  • Ортостатическая проба
  • Проба Летунова
  • Гарвардский степ-тест
  • Тепловой и солнечный удары
  • Гипогликемические состояния
  • Первая доврачебная помощь при утоплении
  • Острые патологические состояния
  • Обморок
  • Гравитационный шок
  • Влияние курения на физическую и умственную работоспособность
  • Влияние алкоголя на физическую и умственную работоспособность
  • Контрольные вопросы
  • II. Физическая культура и спорт в государствах древнего мира
  • 1. Европа (15-17 в. Нашей эры)
  • 2.Азия, африка, америка.
  • 1)Исторические предпосылки возникновения международного спортивного и олимпийского движения.
  • V. Первый международный атлетический конгресс.
  • VI. От олимпийских идей к практике олимпийского движения
  • VII. Международное спортивное и Олимпийское движение в первой половине XX века
  • IX международное олимпийское движение
  • Тема 10. Самостоятельные занятия физическими упражнениями в вузе Введение
  • Глава 1. Методика самостоятельных занятий
  • 1.2. Формы и содержание самостоятельных занятий
  • 1.4. Организация, содержание и методика самостоятельных занятий физическими упражнениями
  • 1.4.1. Средства и методы занятий избранным видом спорта
  • 1.4.2. Занятия системой физических упражнений
  • 1.4.3. Организация самостоятельных занятий
  • 1.4.4. Планирование самостоятельных занятий
  • 1.5. Управление процессом самостоятельных занятий
  • 1.6. Содержание самостоятельных занятий
  • Глава 2. Физическая культура и спорт в свободное время
  • 2.1. Утренняя гигиеническая гимнастика
  • 2.2. Утренние или вечерние специально направленные физические упражнения
  • 2.3. Занятия физическими упражнениями в обеденный перерыв
  • 2.4. Попутная тренировка
  • Глава 3. Самоконтроль при самостоятельных занятиях физическими упражнениями и спортом
  • 3.1. Самоконтроль при занятиях физическими упражнениями и спортом
  • 3.1.1. Субъективные и объективные показатели самоконтроля
  • 3.1.2. Самоконтроль за физическим развитием
  • 3.1.3. Самоконтроль за функциональным состоянием
  • 3.1.4. Самоконтроль за физической подготовленностью
  • 3.1.5. Самоконтроль за тренированностью
  • 3.1.6. Ведение дневника самоконтроля
  • Глава 4. Средства профилактики и восстановления
  • 4.1. Медико-биологические средства восстановления
  • 4.2. Физические упражнения как средства реабилитации
  • Литература
  • Тема 11. Массаж и самомассаж Введение
  • Требования к массажной комнате и оборудованию
  • К массажисту
  • К пациенту
  • Положение пациента при массаже
  • Глава 1. Противопоказания к проведению массажа
  • Глава 2. Методика и техника выполнения приемов массажа Общие указания
  • Некоторые способы поглаживаний
  • Некоторые способы выжиманий:
  • Некоторые способы разминаний
  • Некоторые способы растираний
  • Вибрация
  • Некоторые разновидности ударных приемов
  • Некоторые разновидности сотрясающих приемов
  • Физиологическое воздействие движений на организма:
  • Некоторые способы движений в суставах
  • Парная баня
  • Контрольные вопросы
  • Самомассаж введение
  • Глава 1. Влияние массажа на организма человека
  • Глава 2. Техника и методика выполнения приемов самомассажа
  • Поглаживание
  • Растирание
  • Ударные приемы
  • Вибрационные приемы
  • Пассивные
  • Глава 3. Общий и местный массаж
  • Местный самомассаж
  • Самомассаж области шеи
  • Самомассаж широчайших мышц спины
  • Самомассаж спины: поясничной и крестцовой областей
  • Самомассаж бедра, самомассаж ягодичной области
  • Самомассаж коленного сустава
  • Самомассаж голени и стопы
  • Самомассаж подошвенной поверхности
  • Самомассаж грудной клетки
  • Самомассаж плечевого сустава и дельтовидной мышцы
  • Самомассаж области плеча
  • Самомассаж локтевого сустава, предплечья и кисти
  • Нервная регуляция осуществляется нервной системой, головным и спинным мозгом через нервы, которыми снабжены все органы нашего тела. На организм постоянно воздействуют те или иные раздражения. На все эти раздражения организм отвечает определенной деятельностью или как принято творить, происходит приспособление функции организма к постоянно меняющимся условиям внешней среды. Так, понижение температуры воздуха сопровождается не только сужением кровеносных сосудов, но и усилением обмена веществ в клетках и тканях и следовательно, повышением теплообразования. Благодаря этому устанавливается определенное равновесие между теплоотдачей теплообразованием, не происходит переохлаждение организма, сохраняется постоянство температуры тела. Раздражение пищей вкусовых рецепторов полос га рта вызывает отделение слюны и других пищеварительных соков. под воздействием которых происходит переваривание пищи. Благодаря этому в клетки и ткани поступают необходимые вещества, и устанавливается определенное равновесие между диссимиляцией и ассимиляцией. По такому принципу происходит регуляция и других функции организма.

    Нервная регуляция носит рефлекторный характер. Различные раздражения воспринимаются рецепторами. Возникающее возбуждение из рецепторов по чувствительным нервам передается в центральную нервную, систему, а оттуда по двигательным нервам - в органы, которые осуществляют определенную деятельность. Такие ответные реакции организма на раздражения, осуществляемые через центральную нервную систему. называют рефлексами. Путь же, по которому возбуждение передается при рефлексе, носит название рефлекторной дуги. Рефлексы имеют разнообразный характер. И.П. Павлов разделил все рефлексы на безусловные и условные. Безусловные рефлексы - это рефлексы врожденные, передающиеся по наследству. Примером таких рефлексов являются сосудодвигательные рефлексы (сужение или расширение сосудов в ответ на раздражение кожи холодом или теплом), рефлекс слюноотделения (выделение слюны при раздражении вкусовых сосочков пищей) и многие другие.

    Условные рефлексы - рефлексы приобретенные, они вырабатываются на протяжении жизни животного или человека. Эти рефлексы возникают

    только при определенных условиях и могут исчезать. Примером условных рефлексов является отделение слюны при виде нищи, при ощущении запахов пищи, а у человека даже при разговоре о ней.

    Гуморальная регуляция (Humor - жидкость) осуществляется через кровь и другие жидкое и, составляющие внутреннюю среду организма, различными химическими веществами, которые вырабатываются в самом организме или поступают из внешней среды. Примерами таких веществ являются гормоны, выделяемые железами внутренней секреции, и витамины, поступающие в организм с пищей. Химические вещества разносятся кровью но всему организму и оказывают воздействие на различные функции, в частности на обмен веществ в клетках и тканях. При этом каждое вещество влияет на определенный процесс, происходящий и том или ином органе.

    Нервный и гуморальный механизмы регуляции функций взаимосвязаны. Так, нервная система оказывает регулирующее влияние на органы не только непосредственно через нервы, но также и через железы внутренней секреции, изменяя интенсивность образования гормонов в этих Органах и поступление их в кровь.

    В свою очередь многие гормоны и другие вещества влияют на нервную систему.

    В живом организме нервная и гуморальная регуляция различных функций осуществляется по принципу саморегуляции, т.е. автоматически. По этому принципу регуляции поддерживается па определенном уровне кровяное давление, постоянство состава и физико-химических свойств крови, температура тела. в строго согласованном порядке изменяется обмен веществ, деятельность сердца, дыхательной и других систем органов во время физической работы и т.д.

    Благодаря этому поддерживаются определенные сравнительно постоянные условия, в которых протекает деятельность клеток и тканей организма или другими словами, сохраняется постоянство внутренней среды.

    Следует отметить, что у человека ведущую роль в регуляции жизнедеятельности организма играет нервная система.

    Таким образом, организм человека это единая, целостная, сложно устроенная, саморегулирующаяся и саморазвивающаяся биологическая система, обладающая определенными резервными возможностями. При этом

    знать, что способность к выполнению физической работы может возрастать многократно, но до определенного придела. Тогда как умственная деятельность фактически не имеет ограничений в своем развитии.

    Систематическая мышечная деятельность позволяет путем совершенствования физиологических функций мобилизовать резервы организма, о существовании которых многие даже не догадываются. Следует отметить существование обратного процесса падение функциональных возможностей организма и ускоренное старение при снижении физической активности.

    В ходе физических упражнений совершенствуется высшая нервная деятельность, функции центральной нервной системы. нервно-мышечной. сердечно-сосудистой, дыхательной, выделительной и других систем, обмен веществ и энергии, а также система их нейрогуморального регулирования.

    Человеческий организм, используя свойства саморегулирования внутренних процессов под внешним воздействием, реализует важнейшее свойство - адаптацию к изменяющимся внешним условиям, что является определяющим фактором в способности развития физических качеств и двигательных навыков в процессе тренировок.

    Рассмотрим более подробно характер физиологических изменении в процессе тренировок.

    Физическая нагрузка приводит к многообразным изменениям обмена веществ, характер которых зависит от длительности, мощности работы и количества участвующих мышц. При физической нагрузке преобладают катаболические процессы, мобилизация и использование энергетических субстратов, происходит накопление промежуточных продуктов обмена. Период отдыха характеризуется преобладанием анаболических процессов, накоплением резерва питательных веществ, усиленным синтезом белков.

    Скорость восстановления находится в зависимости от величины возникающих во время работы изменении, то есть от величины нагрузки.

    В период отдыха ликвидируются возникшие во время мышечной деятельности изменения обмена веществ. Если при физической нагрузке преобладают катаболические процессы, мобилизация и использование энергетических субстратов, происходит накопление промежуточных продуктов обмена, то период отдыха характеризуются преобладанием анаболических процессов, накоплением резерва питательных веществ, усиленным синтезом белков.

    В после рабочий период возрастает интенсивность аэробного окисления, повышено потребление кислорода, т.е. ликвидируется кислородный долг. Субстратом окисления служат промежуточные продукты обмена, образовавшиеся в процессе мышечной деятельности, молочная кислота, кетоновые тела, кетокислоты. Запасы углеводов при физической работе, как правило, существенно снижаются, поэтому основным субстратом окисления становятся жирные кислоты. Благодаря усиленному использованию липидов в восстановительный период снижается дыхательный коэффициент.

    Восстановительный период характеризуется усиленным биосинтезом белков, который угнетается во время физической работы, увеличивается также образование и выведение из организма конечных продуктов белкового обмена (мочевина и др.).

    Скорость восстановления находится в зависимости от величины возникающих во время работы изменений, т.е. от величины нагрузки, что схематически представлено на рис. 1

    Рис.1 Схема процессов расходования и восстановления источников

    энергии при мышечной деятельности ратной интенсивности

    Восстановление изменений, возникающих под влиянием нагрузок малой и средней интенсивности, идет медленнее, чем после нагрузок повышенной и предельной интенсивности, что объясняется более глубокими изменениями в период работы. После повышенных по интенсивности нагрузок наблюдаемый показатель обмена, веществ не только достигает исходного уровня, но и превышает его. Такое повышение выше исходного уровня получило название сверхвосстановления (суперкомпенсации) . Оно регистрируется только тогда, когда нагрузка, превышает по величине определенный уровень, т.е. тогда, когда возникающие изменения обмена оказывают влияние на генетический аппарат клетки. Выраженность сверхвостановления и его длительность находятся в прямой зависимости от интенсивности нагрузки.

    Явление сверхвоееттиювления является важным: механизмом приспособления (органа) к изменившимся условиям функционирования и имеет важное значение для понимания биохимических основ спортивной тренировки. Следует отметить, что как общебиологическая закономерность, распространяется не только на накопление энергетического материала, но и на синтез белков, что, в частности, проявляется в виде рабочей гипертрофии скелетных мышц, сердечной мышщы. После интенсивной нагрузки усиливается синтез ряда ферментов (индукция ферментов) возрастает концентрация креатинфосфата, миоглобина, происходит ряд других изменений.

    Установлено, что активная мышечная деятельность вызывает уси­ление деятельности сердечно-сосудистой, дыхательной и других систем организма. При любой деятельности человека все органы и системы ор­ганизма действуют согласованно, в тесном единстве. Эта взаимосвязь осуществляется с помощью нервной системы и гуморальной (жидкостной) регуляции.

    Нервная система осуществляет регуляцию деятельности организма посредством биоэлектрических импульсов. Основными нервными процес­сами являются возбуждение и торможение, возникающие в нервных клет­ках. Возбуждение - деятельное состояние нервных клеток, когда они пе­редают ил» направляют сами нервные импульсы другим клеткам: нерв­ным, мышечным, железистым и другим. Торможение - состояние нервных клеток, когда их активность направлена на восстановление., Сон, напри­мер, является состоянием нервной системы, когда подавляющее число нервных клеток ЦНС заторможено.

    Гуморальная регуляция производится через кровь посредством особых химических веществ (гормонов), выделяемых железами внутрен­ней секреции, соотношением концентрации СО2 и О2 с помощью других механизмов. Например, в предстартовом состоянии, когда ожидается ин­тенсивная физическая нагрузка, железы внутренней секреции (надпочеч­ники) выделяют в кровь специальный гормон-адреналин, который спо­собствует усилению деятельности сердечно-сосудистой системы.

    Гуморальная и нервная регуляция осуществляются в единстве. Главенствующая роль отводится ЦНС, головному мозгу, являющемуся как бы центральным штабом управления жизнедеятельностью организма.

  • Нервная регуляция обеспечивает быструю и направленную передачу сигналов, которые в виде нервных импульсов по соответствующим нервным проводникам поступают к определенному адресату - объекту регуляции. Быстрая передача сигналов (до 80-120 м/с) без затухания и потери энергии обусловлена свойствами проводящих возбуждение структур, преимущественно состоянием их мембран. Нервной регуляции подлежат как соматические (деятельность скелетной мускулатуры), так и вегетативные (деятельность внутренних органов) функции. Это универсальное значение нервной регуляции жизнедеятельности и физиологических функций было положено в основу концепции нервизма, рассматривающей целостность организма как результат деятельности нервной системы. Однако абсолютизация этой концепции до теории физиологии не оставляет места для многообразия уровней и связей в системе регуляции жизнедеятельности механизмов интеграции функций. Элементарный и основной принцип нервной регуляции – рефлекс. Рефлекс - это ответная реакция организма на раздражение рецепторов, осуществляемая при участии ЦНС.

    В механизме нервной регуляции функций различают 2 вида рефлексов: безусловные, которые являются врожденными, и условные, приобретенные в течении жизни индивидуума.

    От гуморального пути он отличается тем, что а) сигналы распространяются по нервным волокнам с большой скоростью – от 0,5 до 80-100м/с, б) импульсы поступают строго к определенным органам или его частям

    Несмотря на указанные различия в скорости и локальности воздействия, обе системы регуляции взаимосвязаны друг с другом. Многие гормоны влияют на деятельность нервной системы, а нервная система, в свою очередь, оказывает регулирующее действие на протекание всех процессов в организме, в том числе и на гуморальные. В результате создается единый скоординированный механизмнервно-гуморальной регуляции функций организма человека при ведущей роли нервной системы. Эта регуляция осуществляется автоматически по принципу саморегуляции, что обеспечивает поддержание относительного постоянства внутренней среды организма. Например, норадреналин является медиатором постганглионарных волокон симпатических нервов и гормоном мозгового вещества надпочечников.

    1. Иммунная система

    Виды иммунного ответа

    Как уже говорилось выше, иммунный ответ представляет собой реакцию организма на внедрение в него микробов или различных ядов. В целом, любое вещество, чья структура отличается от структуры тканей человека способно вызвать иммунный ответ. Исходя из механизмов, задействованных в его реализации, иммунный ответ может быть различным.

    Во-первых, различаем специфический и неспецифический иммунный ответ.

    Неспецифический иммунный ответ - это первый этап борьбы с инфекцией он запускается сразу же после попадания микроба в наш организм. В его реализации задействованы система комплимента, лизоцим, тканевые макрофаги. Неспецифический иммунный ответ практически одинаков для всех типов микробов и подразумевает первичное разрушение микроба и формирование очага воспаления. Воспалительная реакция это универсальный защитный процесс, который направлен на предотвращение распространения микроба. Неспецифический иммунитет определяет общую сопротивляемость организма. Люди с ослабленным иммунитетом чаще болеют различными заболеваниями.

    Специфический иммунитет это вторая фаза защитной реакции организма. Основной характеристикой специфического иммунного ответа является распознавание микроба и выработка факторов защиты направленных специально против него. Процессы неспецифического и специфического иммунного ответа пересекаются и во многом дополняют друг друга. Во время неспецифического иммунного ответа часть микробов разрушается, а их части выставляются на поверхности клеток (например, макрофагов). Во второй фазе иммунного ответа клетки иммунной системы (лимфоциты) распознают части микробов, выставленные на мембране других клеток, и запускают специфический иммунный ответ как таковой. Специфический иммунный ответ может быть двух типов: клеточный и гуморальный.

    Гуморальная регуляция

    Гуморальная регуляция - один из эволюционно ранних механизмов регуляции процессов жизнедеятельности в организме, осуществляемый через жидкие среды организма (кровь, лимфу, тканевую жидкость, полость рта) с помощью гормонов, выделяемых клетками, органами, тканями. У высокоразвитых животных и человека гуморальная регуляция подчинена нервной регуляции и составляет совместно с ней единую систему нейрогуморальной регуляции. Продукты обмена веществ действуют не только непосредственно на эффекторные органы, но и на окончания чувствительных нервов (хеморецепторы) и нервные центры, вызывая гуморальным или рефлекторным путём те или иные реакции. Так, если в результате усиленной физической работы в крови увеличивается содержание CO 2 , то это вызывает возбуждение дыхательного центра, что ведёт к усилению дыхания и выведению из организма излишков CO 2 . Гуморальная передача нервных импульсов химическими веществами, т. н. медиаторами, осуществляется в центральной и периферической нервной системе. Наряду с гормонами важную роль в гуморальной регуляции играют продукты промежуточного обмена.

    Биологическая активность жидких сред организма обусловлена соотношением содержания катехоламинов (адреналина и норадреналина , их предшественников и продуктов распада), ацетилхолина , гистамина , серотонина и других биогенных аминов, некоторых полипептидов и аминокислот, состоянием ферментных систем, присутствием активаторов и ингибиторов , содержанием ионов, микроэлементов и т. д. Учение о гуморальной регуляции разработано рядом отечественных (В. Я. Данилевский, А. Ф. Самойлов, К. М. Быков, Л. С. Штерн и др.) и зарубежных учёных (австрийского - О. Лёви, американского - У. Кеннон и др.).

    Литература

    1. Быков К. М., Кора головного мозга и внутренние органы, 2 изд., М. - Л., ;
    2. Мак-Ильвеин Г., Биохимия и центральная нервная система, пер. с англ.. М., ;
    3. Monnier М., Functions of the nervous system, v. 1, Amst., .

    Wikimedia Foundation . 2010 .

    Смотреть что такое "Гуморальная регуляция" в других словарях:

      Большой Энциклопедический словарь

      - (от лат. humor жидкость), один из механизмов координации процессов жизнедеятельности в организме, осуществляемый через жидкие среды организма (кровь, лимфу, тканевую жидкость) с помощью биологически активных веществ, выделяемых клетками, тканями… … Биологический энциклопедический словарь

      ГУМОРАЛЬНАЯ РЕГУЛЯЦИЯ - (от лат. humor жидкость) координация физиологических и биохимических процессов в организме, осуществляемая через жидкие среды (кровь, лимфа, тканевая жидкость) с помощью различных веществ (в т. ч. гормонов). У высокоразвитых организмов подчинена… … Большая психологическая энциклопедия

      гуморальная регуляция - Один из механимов ругуляции жизнедеятельности организма, осуществляемый через его жидкие среды (кровь, лимфа, гемолимфа, тканевая жидкость); в основе Г.р. секреция биологически активных веществ, прежде всего гормонов. [Арефьев В.А., Лисовенко Л.А … Справочник технического переводчика

      Координация физиологических и биохимических процессов, осуществляемая через жидкие среды организма (кровь, лимфу, тканевую жидкость) с помощью биологически активных веществ (метаболиты, гормоны, гормоноиды ионы), выделяемых клетками,… … Большая советская энциклопедия

      Координация физиологических и биохимических процессов в организме, осуществляемая через жидкие среды (кровь, лимфа, тканевая жидкость) с помощью гормонов и различных продуктов обмена веществ. У высокоразвитых животных и человека подчинена нервной … Энциклопедический словарь

      Humoral regulation гуморальная регуляция. Oдин из механимов ругуляции жизнедеятельности организма, осуществляемый через его жидкие среды (кровь, лимфа, гемолимфа, тканевая жидкость); в основе Г.р. секреция биологически активных веществ, прежде… … Молекулярная биология и генетика. Толковый словарь.

      Регуляция жизнедеятельности, осуществляемая через жидкие среды организма (кровь, лимфу, тканевую жидкость) с помощью биологически активных веществ, выделяемых клетками, тканями и органами в процессе их функционирования … Большой медицинский словарь

      Гуморальная регуляция - Регуляция функций организма или отдельного органа или ткани при участии различных химических веществ (медиаторов, гормонов, метаболитов и других биологически активных веществ), содержащихся в жидких средах организма (в крови, лимфе, межтканевой… … Адаптивная физическая культура. Краткий энциклопедический словарь

      ГУМОРАЛЬНАЯ РЕГУЛЯЦИЯ - [от лат. humor влага, жидкость и лат. regulare приводить в порядок, налаживать] регуляция жизнедеятельности организма, осуществляющаяся через жидкие среды (кровь, лимфу, тканевую жидкость) с помощью биологически активных веществ, выделяемых… … Психомоторика: cловарь-справочник

    СТРОЕНИЕ, ФУНКЦИИ

    Человеку приходится постоянно регулировать физиологические процессы в соответствии с собственными потребностями и изменениями окружающей среды. Для осуществления постоянной регуляции физиологические процессов используются два механизма: гуморальный и нервный.

    Модель нервно-гуморального управления строится по принципу двухслойной нейронной сети. Роль формальных нейронов первого слоя в нашей модели играют рецепторы. Второй слой состоит из одного формального нейрона - сердечного центра. Его входными сигналами являются выходные сигналы рецепторов. По единственному аксону формального нейрона второго слоя передается выходная величина нервно-гуморального фактора.

    Мужские половые гормоны регулируют рост и развитие организма, возникновение вторичных половых признаков - рост усов, развитие характерной волосистости других частей тела, огрубление голоса, изменение телосложения.

    Женские половые гормоны регулируют развитие у женщин вторичных половых признаков - высокого голоса, округлых форм тела, развитие грудных желез, управляют половыми циклами, протеканием беременности и родов. Оба вида гормонов вырабатываются как у мужчин, так и у женщин.

    организма

    Регуляция функций клеток, тканей и органов, взаимосвязь между ними, т.е. целостность организма, и единство организма и внешней среды осуществляется нервной системой и гуморальным путем . Другими словами, имеем два механизма регуляции функций - нервная и гуморальная.

    Нервная регуляция осуществляется нервной системой, головным и спинным мозгом через нервы, которыми снабжены все органы нашего тела. На организм постоянно воздействуют те или иные раздражения. На все эти раздражения организм отвечает определенной деятельностью или как принято творить, происходит приспособление функции организма к постоянно меняющимся условиям внешней среды. Так, понижение температуры воздуха сопровождается не только сужением кровеносных сосудов, но и усилением обмена веществ в клетках и тканях и следовательно, повышением теплообразования. Благодаря этому устанавливается определенное равновесие между теплоотдачей теплообразованием, не происходит переохлаждение организма, сохраняется постоянство температуры тела. Раздражение пищей вкусовых рецепторов полос га рта вызывает отделение слюны и других пищеварительных соков. под воздействием которых происходит переваривание пищи. Благодаря этому в клетки и ткани поступают необходимые вещества, и устанавливается определенное равновесие между диссимиляцией и ассимиляцией. По такому принципу происходит регуляция и других функции организма.

    Нервная регуляция носит рефлекторный характер. Различные раздражения воспринимаются рецепторами. Возникающее возбуждение из рецепторов по чувствительным нервам передается в центральную нервную, систему, а оттуда по двигательным нервам - в органы, которые осуществляют определенную деятельность. Такие ответные реакции организма на раздражения, осуществляемые через центральную нервную систему. называютрефлексами. Путь же, по которому возбуждение передается при рефлексе, носит название рефлекторной дуги. Рефлексы имеют разнообразный характер. И.П. Павлов разделил все рефлексы на безусловные и условные. Безусловные рефлексы - это рефлексы врожденные, передающиеся по наследству. Примером таких рефлексов являются сосудодвигательные рефлексы (сужение или расширение сосудов в ответ на раздражение кожи холодом или теплом), рефлекс слюноотделения (выделение слюны при раздражении вкусовых сосочков пищей) и многие другие.

    Условные рефлексы - рефлексы приобретенные, они вырабатываются на протяжении жизни животного или человека. Эти рефлексы возникают

    только при определенных условиях и могут исчезать. Примером условных рефлексов является отделение слюны при виде нищи, при ощущении запахов пищи, а у человека даже при разговоре о ней.

    Гуморальная регуляция (Humor - жидкость) осуществляется через кровь и другие жидкое и, составляющие внутреннюю среду организма, различными химическими веществами, которые вырабатываются в самом организме или поступают из внешней среды. Примерами таких веществ являются гормоны, выделяемые железами внутренней секреции, и витамины, поступающие в организм с пищей. Химические вещества разносятся кровью но всему организму и оказывают воздействие на различные функции, в частности на обмен веществ в клетках и тканях. При этом каждое вещество влияет на определенный процесс, происходящий и том или ином органе.

    Нервный и гуморальный механизмы регуляции функций взаимосвязаны. Так, нервная система оказывает регулирующее влияние на органы не только непосредственно через нервы, но также и через железы внутренней секреции, изменяя интенсивность образования гормонов в этих Органах и поступление их в кровь.

    В свою очередь многие гормоны и другие вещества влияют на нервную систему.

    В живом организме нервная и гуморальная регуляция различных функций осуществляется по принципу саморегуляции, т.е. автоматически. По этому принципу регуляции поддерживается па определенном уровне кровяное давление, постоянство состава и физико-химических свойств крови, температура тела. в строго согласованном порядке изменяется обмен веществ, деятельность сердца, дыхательной и других систем органов во время физической работы и т.д.

    Благодаря этому поддерживаются определенные сравнительно постоянные условия, в которых протекает деятельность клеток и тканей организма или другими словами, сохраняется постоянство внутренней среды.

    Следует отметить, что у человека ведущую роль в регуляции жизнедеятельности организма играет нервная система.

    Таким образом, организм человека это единая, целостная, сложно устроенная, саморегулирующаяся и саморазвивающаяся биологическая система, обладающая определенными резервными возможностями. При этом

    знать, что способность к выполнению физической работы может возрастать многократно, но до определенного придела. Тогда как умственная деятельность фактически не имеет ограничений в своем развитии.

    Систематическая мышечная деятельность позволяет путем совершенствования физиологических функций мобилизовать резервы организма, о существовании которых многие даже не догадываются. Следует отметить существование обратного процесса падение функциональных возможностей организма и ускоренное старение при снижении физической активности.

    В ходе физических упражнений совершенствуется высшая нервная деятельность , функции центральной нервной системы. нервно-мышечной. сердечно-сосудистой, дыхательной, выделительной и других систем, обмен веществ и энергии, а также система их нейрогуморального регулирования.

    Человеческий организм, используя свойства саморегулирования внутренних процессов под внешним воздействием, реализует важнейшее свойство - адаптацию к изменяющимся внешним условиям, что является определяющим фактором в способности развития физических качеств и двигательных навыков в процессе тренировок.

    Рассмотрим более подробно характер физиологических изменении в процессе тренировок.

    Физическая нагрузка приводит к многообразным изменениям обмена веществ, характер которых зависит от длительности, мощности работы и количества участвующих мышц. При физической нагрузке преобладают катаболические процессы, мобилизация и использование энергетических субстратов, происходит накопление промежуточных продуктов обмена. Период отдыха характеризуется преобладанием анаболических процессов, накоплением резерва питательных веществ, усиленным синтезом белков.

    Скорость восстановления находится в зависимости от величины возникающих во время работы изменении, то есть от величины нагрузки.

    В период отдыха ликвидируются возникшие во время мышечной деятельности изменения обмена веществ. Если при физической нагрузке преобладают катаболические процессы, мобилизация и использование энергетических субстратов, происходит накопление промежуточных продуктов обмена, то период отдыха характеризуются преобладанием анаболических процессов, накоплением резерва питательных веществ, усиленным синтезом белков.

    В после рабочий период возрастает интенсивность аэробного окисления, повышено потребление кислорода, т.е. ликвидируется кислородный долг. Субстратом окисления служат промежуточные продукты обмена, образовавшиеся в процессе мышечной деятельности, молочная кислота, кетоновые тела, кетокислоты. Запасы углеводов при физической работе, как правило, существенно снижаются, поэтому основным субстратом окисления становятся жирные кислоты. Благодаря усиленному использованию липидов в восстановительный период снижается дыхательный коэффициент.

    Восстановительный период характеризуется усиленным биосинтезом белков, который угнетается во время физической работы, увеличивается также образование и выведение из организма конечных продуктов белкового обмена (мочевина и др.).

    Скорость восстановления находится в зависимости от величины возникающих во время работы изменений, т.е. от величины нагрузки, что схематически представлено на рис. 1

    Рис.1 Схема процессов расходования и восстановления источников

    энергии при мышечной деятельности ратной интенсивности

    Восстановление изменений, возникающих под влиянием нагрузок малой и средней интенсивности, идет медленнее, чем после нагрузок повышенной и предельной интенсивности, что объясняется более глубокими изменениями в период работы. После повышенных по интенсивности нагрузок наблюдаемый показатель обмена, веществ не только достигает исходного уровня, но и превышает его. Такое повышение выше исходного уровня получило название сверхвосстановления (суперкомпенсации) . Оно регистрируется только тогда, когда нагрузка, превышает по величине определенный уровень, т.е. тогда, когда возникающие изменения обмена оказывают влияние на генетический аппарат клетки. Выраженность сверхвостановления и его длительность находятся в прямой зависимости от интенсивности нагрузки.

    Явление сверхвоееттиювления является важным: механизмом приспособления (органа) к изменившимся условиям функционирования и имеет важное значение для понимания биохимических основ спортивной тренировки. Следует отметить, что как общебиологическая закономерность, распространяется не только на накопление энергетического материала, но и на синтез белков, что, в частности, проявляется в виде рабочей гипертрофии скелетных мышц, сердечной мышщы. После интенсивной нагрузки усиливается синтез ряда ферментов (индукция ферментов) возрастает концентрация креатинфосфата, миоглобина, происходит ряд других изменений.

    Установлено, что активная мышечная деятельность вызывает уси­ление деятельности сердечно-сосудистой, дыхательной и других систем организма. При любой деятельности человека все органы и системы ор­ганизма действуют согласованно, в тесном единстве. Эта взаимосвязь осуществляется с помощью нервной системы и гуморальной (жидкостной) регуляции.

    Нервная система осуществляет регуляцию деятельности организма посредством биоэлектрических импульсов. Основными нервными процес­сами являются возбуждение и торможение, возникающие в нервных клет­ках. Возбуждение - деятельное состояние нервных клеток, когда они пе­редают ил» направляют сами нервные импульсы другим клеткам: нерв­ным, мышечным, железистым и другим. Торможение - состояние нервных клеток, когда их активность направлена на восстановление., Сон, напри­мер, является состоянием нервной системы, когда подавляющее число нервных клеток ЦНС заторможено.

    Гуморальная регуляция производится через кровь посредством особых химических веществ (гормонов), выделяемых железами внутрен­ней секреции, соотношением концентрации СО2 и О2 с помощью других механизмов. Например, в предстартовом состоянии, когда ожидается ин­тенсивная физическая нагрузка, железы внутренней секреции (надпочеч­ники) выделяют в кровь специальный гормон-адреналин, который спо­собствует усилению деятельности сердечно-сосудистой системы.

    Гуморальная и нервная регуляция осуществляются в единстве. Главенствующая роль отводится ЦНС, головному мозгу, являющемуся как бы центральным штабом управления жизнедеятельностью организма.

    2.10.1. Рефлекторная природа и рефлекторные механизмы дви­гательной деятельности

    Нервная система действует по принципу рефлекса. Унаследован­ные рефлексы, от рождения заложенные в нервной системе, в ее структуре, в связях между нервными клетками, называют безусловными рефлексами. Объединяясь в длинные цепи, безусловные рефлексы являются основой инстинктивного поведения. У человека и у высших животных в основу поведения заложены условные рефлексы, вырабатываемые в процессе жизнедеятельности на основе безусловных рефлексов.

    Спортивная и трудовая деятельность человека, в том числе и овла­дение двигательными навыками, осуществляется по принципу взаимосвязи условных рефлексов и динамических стереотипов с безусловными рефлек­сами.

    Для выполнения четких целенаправленных движений необходимо непрерывное поступление в ЦНС сигналов о функциональном состоянии мышц, о степени их сокращения, напряжения и расслабления, о позе тела, о положении суставов и угла сгиба в них.

    Вся эта информация передается от рецепторов сенсорных систем и особенно от рецепторов двигательной сенсорной системы, от так назы­ваемых проприорецепторов, которые расположены в мышечной ткани, фасциях, суставных сумках и сухожилиях.

    От этих рецепторов по принципу обратной связи и по механизму рефлекса в ЦНС поступает полная информация о выполнении данного дви­гательного действия и о сравнении ее с заданной программой.

    Каждое, даже самое простое движение нуждается в постоянной коррекции, которая и обеспечивается информацией, поступающей от проприорецепторов и от других сенсорных систем. При многократном повто­рении двигательного действия импульсы от рецепторов достигают двига­тельных центров в ЦНС, которые соответствующим образом меняют свою импульсацию, идущую к мышцам, с целью совершенствования разучивае­мого движения.

    Благодаря такому сложному рефлекторному механизму происхо­дит совершенствование двигательной деятельности.

    Образование двигательного навыка

    Двигательный навык - форма двигательных действий, выработан­ная по механизму условного рефлекса в результате соответствующих систематических упражнений.

    Процесс формирования двигательного навыка последовательно проходит три фазы: генерализации, концентрации, автоматизации.

    Фаза генерализации характеризуется расширением и усилением возбудительного процесса, в результате чего в работу вовлекаются лиш­ние группы мышц, а напряжение работающих мышц оказывается неоп­равданно большим. В этой фазе движения скованы, неэкономичны, плохо координированы и неточны.

    Фаза генерализации сменяется фазой концентрации , когда из­лишнее возбуждение, благодаря дифференцированному торможению, кон­центрируется в нужных зонах головного мозга. Исчезает излишняя напря­женность движений, они становятся точными, экономичными, выполня­ются свободно, без напряжения, стабильно.

    В фазе автоматизации навык уточняется и закрепляется, выпол­нение отдельных движений становится как бы автоматическим и не требу­ется деятельный контроль сознания, которое может быть переключено на окружающую обстановку, поиск решения и т.п. Автоматизированный навык отличается высокой точностью и стабильностью выполнения всех составляющих его движений.

    Автоматизация навыков делает возможным выполнение одно­временно нескольких двигательных действий.

    В образовании двигательного навыка участвуют различные анали­заторы: двигательный (проприоцептивный), вестибулярный, слуховой, зрительный, тактильный.

    2.10.3 Аэробные, анаэробные процессы

    Для того чтобы мышечная работа могла продолжаться, необходимо, чтобы скорость ресинтеза АТФ соответствовала его расходу. Существуют три способа ресинтеза (восполнения расходуемой во время работы АТФ):

    · аэробная (дыхательное фосфорилирование);

    · анаэробные механизмы;

    · креатинфосфатные и анаэробный гликолиз.

    Практически при любой работе (выполнение физических упражнений) энергообеспечение осуществляется за счет функционирования всех трех механизмов ресинтеза АТФ. В связи с этими различиями все виды физических упражнений (физическую работу) разделили на два вида. Один из них – аэробная работа (производительность) включает упражнения, выполняемые Преимущественно за счет аэробных механизмов энергообеспечения: ресинтез АТФ осуществляется путем дыхательного фосфорилирования при окислении различных субстратов с участием кислорода поступающего в мышечную клетку. Второй вид работы - анаэробная работа (производительность), к этому виду работы относят упражнения, выполнение которых в решающей степени зависят от анаэробных механизмов ресинтеза АТФ в мышцах. Иногда выделяют смешанный висд работы (аэробно-анаэробную), когда, и аэробные, и анаэробные механизмы энергообеспечения вносят существенный вклад.

    ОБЩАЯ ХАРАКТЕРИСТИКА ГУМОРАЛЬНОЙ РЕГУЛЯЦИИ

    Гуморальная регуляция - это разновидность биологической регуляции, при котором информация передается с помощью биологически активных химических веществ, которые разносятся по организму кровью или лимфой, а также путем диффузии в межклеточной жидкости.

    Различия гуморальной регуляции от нервной:

    1 Носителем информации при гуморальной регуляции является химическое вещество, при нервной - нервный импульс. 2 Передача гуморальной регуляции осуществляется током крови, лимфы, путем диффузии: нервной - с помощью нервных проводников.

    3 Гуморальный сигнал распространяется медленнее (скорость течения крови в капиллярах 0,03 см / с), чем нервный (скорость нервной передачи составляет 120 м / с).

    4 Гуморальный сигнал не имеет такого точного адресата (работает по принципу "всем, всем, всем, кто откликнется»), как нервный (например, нервный импульс передается мышце пальца). Однако эта разница не существенная, потому клетки имеют различную чувствительность к химическим веществам. Поэтому химические вещества действуют на строго определенные клетки, а именно на те, которые способны воспринимать эту информацию. Клетки, обладающие такой высокой чувствительностью к гуморального фактора, называются клетками-мишенями.

    5 Гуморальная регуляция используется для обеспечения реакций, не требующих высокой скорости и точности исполнения.

    6 Гуморальная регуляция, как и нервная, выполняется замкнутым контуром регуляции, в котором все его элементы связаны между собой (рис. 6.1). В контуре гуморальной регуляции отсутствует (как самостоятельная структура) следящий устройство (СП), так как его функции выполняют рецепторы мембраны инкреторную клеток.

    7 Гуморальные факторы, которые попадают в кровь или лимфу, диффундируют в межклеточную жидкость, и поэтому действие их может распространяться на близлежащие клетки-органы, то есть их влияние имеет местный характер. Они также могут иметь дистантний влияние, распространяющееся на клетки-мишени на расстоянии.

    Среди биологически активных веществ основную роль в регуляции играют гормоны. Местная регуляция может осуществляться также благодаря метаболитов, образующихся во всех тканях организма, особенно при их интенсивной деятельности.

    Гормоны разделяют на настоящие и тканевые (рис. 6.2), Настоящие гормоны образуются эндокринными железами и специализированными клетками. Настоящие гормоны взаимодействуют с клетками, которые называют "мишенями", и таким образом влияют на функции организма.

    Тканевые гормоны образуются неспециализированными клетками различного вида. Они участвуют в местной регуляции висцеральных функций.

    Сигнализация, передается гормонами к клеткам-мишеням, может осуществляться тремя способами:

    1 Настоящие гормоны действуют на расстоянии (дистантно), так эндокринные железы или эндокринные клетки выделяют гормоны в кровь, которой они транспортируются к клеткам-мишеням, поэтому такую систему сигнализации

    РИС. 6.1.

    РИС. 6.2.

    называют эндокринной сигнализацией (например, гормоны щитовидной железы, аденогипофиза, надпочечников и многие другие).

    2 Тканевые гормоны могут действовать через межклеточную жидкость на клетки-мишени, которые расположены рядом. - Это система паракринной сигнализации (например, тканевый гормон гистамин, который выделяется энтерохромафинных клетками слизистой оболочки желудка, действует на париетальные клетки желудочных желез).

    3 Некоторые гормоны могут регулировать активность тех клеток, которые их производят, - это система аугокриннои сигнализации (например, гормон инсулин регулирует свою продукцию бета-клетками островков поджелудочной железы).

    По химическому строению гормоны делятся на три группы:

    1 Белки и полипептиды (гормоны гипоталамуса, гипофиза, поджелудочной железы и др.) - Это самая многочисленная группа гормонов: они водорастворимые и циркулируют в плазме в свободном состоянии; синтезируются в эндокринных клетках и хранятся в секреторных гранулах в цитоплазме; попадают в кровь путем экзоцитоза, концентрация в крови находится в пределах 10-12-10-10 моль / л;

    В Аминокислоты и их производные. К ним относятся;

    Гормоны мозгового вещества надпочечников - катехоламины (адреналин, норадреналин), которые являются водорастворимыми и производными аминокислоты тирозина; секретируются и хранятся в цитоплазме в секреторных гранулах; в крови циркулируют в свободном состоянии: концентрация в плазме крови адреналина - 2 10-10 моль / л. норадреналина - 13 10-10 моль / л;

    Гормоны щитовидной железы - тироксин, трийодтиронин; они жирорастворимые. Это единственные вещества в организме, содержащие йод и продуцируются фолликулярными клетками; секретируются в кровь простой диффузии: большинство из них транспортируется кровью в связанном состоянии с транспортным белком - тироксинсвязывающего глобулина; концентрация в плазме крови тиреоидных гормонов - 10-6 моль / л.

    3 Стероидные гормоны (гормоны коры надпочечников и половых желез) являются производными холестерина и относятся к жирорастворимым; обладают высокой растворимости в липидах и легко диффундируют через мембраны клеток. В плазме циркулируют в связанном состоянии с транспортными белками - стероидзвьязуючимы глобулинами; концентрация в плазме крови -10-9 моль / л.

    Латентный период действия гормонов - интервал между пусковым стимулом и реакцией с участием гормонов - может длиться начиная от нескольких секунд, минут, часов или дней. Так, выделение молока молочными железами может возникать уже через несколько секунд после введения гормона окситоцина; метаболические реакции на тироксин наблюдаются через 3 дня.

    Инактивация гормонов происходит преимущественно в печени и почках путем ферментных механизмов, таких как гидролиз, окисление, гидроксилирование, декарбоксилирования и других. Вывод некоторых гормонов из организма с мочой или калом незначительное (

    При физиологической регуляции организма функции осуществляются на оптимальном уровне для нормальной работоспособности, поддержки гомеостатических условий с процессами метаболизма. Её цель заключается в том, чтобы организм всегда был приспособлен к изменяющимся внешнесредовым условиям.

    У организма человека регуляционная деятельность представлена следующими механизмами:

    • нервная регуляция;

    Работа нервной и гуморальной регуляции совместная, между собой они тесно связаны. Химические соединения, осуществляющие регуляцию организма, осуществляют воздействие на нейроны с полным изменением их состояния. Гормональные соединения, секретирующиеся в соответствующих железах, также влияют на НС. А функции желез, продуцирующих гормоны, управляются НС, значение которой при поддержке регуляторной функции для организма огромно. Гуморальный фактор является частью нервно-гуморальной регуляции.

    Примеры регуляций

    Наглядность регуляции покажет пример того, как изменяется осмотическое давление крови при состоянии, когда человек хочет пить. Данный тип давления увеличивается из-за дефицита влаги внутри организма. Это приводит к раздражённости осмотических рецепторов. Появившаяся возбуждённость через нервные пути передаётся в ЦНС. Из неё множество импульсов попадают к гипофизарной железе, происходит стимуляция с выделением в кровоток антидиуретического гипофизарного гормона. В кровотоке гормон проникает к изогнутым почечным каналам, происходит усиление обратного всасывания влаги из клубочкового ультрафильтрата (первичной мочи) в кровоток. Результат этого ─ наблюдается снижение выделяемой с водой мочи, происходит восстановление отклонившегося от нормальных показателей осмотического давления организма.

    При избыточном глюкозном уровне кровотока нервной системой осуществляется стимуляция функций интросекреторной области эндокринного органа, вырабатывающего инсулиновывй гормон. Уже в кровотоке поступление инсулинового гормона увеличилось, ненужная глюкоза вследствие его влияния переходит к печени, мышцам в гликогеновом виде. Усиленная физическая работа способствует увеличению потребления глюкозы, в кровотоке её объём уменьшается, осуществляется усиление функций надпочечников. Адреналиновым гормоном осуществляется переход гликогена в глюкозу. Таким образом, нервная регуляция, воздействующая на внутрисекреторные железы, осуществляет стимуляцию либо торможение функций важных активных биологических соединений.

    Гуморальная регуляция жизненных функций организма в отличие от нервной регуляции при переносе информации применяет разную жидкостную среду организма. Передача сигналов осуществляется с помощью химических соединений:

    • гормональных;
    • медиаторных;
    • электролитных и многих других.

    Гуморальная регуляция, также, как и нервная регуляция содержит некоторые отличия.


    • отсутствует конкретный адресат. Течение биовеществ доставляется к разным клеткам организма;
    • информация доставляется с небольшой скоростью, которая сопоставима скорости течения биоактивных сред: от 0.5-0.6 до 4.5-5 м/с;
    • действие длинное.

    Нервная регуляция жизненных функций в теле человека осуществляется с помощью ЦНС и ПНС. Передача сигналов осуществляется с помощью многочисленных импульсов.

    Данная регуляция характерна своими отличиями.

    • существует конкретный адрес доставки сигнала к конкретному органу, ткани;
    • доставка информации осуществляется с большой скоростью. Скорость импульса ─ до 115-119 м/с;
    • действие кратковременное.

    Гуморальное регулирование


    Гуморальный механизм ─ это древняя форма взаимодействия, которая со временем совершенствовалась. У человека существуют несколько разных вариантов реализации данного механизма. Неспецифическим вариантом регуляции является местным.

    Местная клеточная регуляция осуществляется тремя методами, их основание составляет перенос сигналов соединениями в границе единственного органа либо ткани при помощи:

    • креаторной клеточной связи;
    • простых видов метаболита;
    • активных биологических соединений.

    Благодаря креаторной связи происходит межклеточный информационный обмен, необходимый для направленной настройки внутриклеточного синтезировния белковых молекул с другими процессами для преобразования клеток в ткани, дифференцирования, развитием с ростом, а в итоге выполнения функций клеток, содержащихся в ткани, как целостной многоклеточной системы.

    Метаболит является продуктом процессов метаболизма, может действовать аутокринно, то есть изменять клеточную работоспособность, посредством которой он выделяется, или паракринно, то есть изменять клеточную работу, где клетка располагается в границе той же ткани, достигая её через внутриклеточную жидкость. К примеру, при накоплении молочной кислоты во время физической работы сосуды, приносящие к мышцам кровь, расширяются, кислородное насыщение мышцы увеличивается, однако, сила мышечной сокращаемости снижается. Так проявляется гуморальная регуляция.

    Гормоны, расположенные в тканях, также являются биологическими активными соединениями - продуктами метаболизма клеток, но имеют более сложное химическое строение. Они представлены:

    • биогенными аминами;
    • кининами;
    • ангиотензинами;
    • простогландинами;
    • эндотелиями и другими соединениями.

    Данные соединения изменяют следующие биофизические клеточные свойства:

    • мембранная проницаемость;
    • настройку энергетических обменных процессов;
    • мембранный потенциал;
    • ферментные реакции.

    Ещё они способствуют образованию второстепенных посредников и изменяют тканевое кровоснабжение.


    БАВ (биологически активные вещества) исполняют регуляцию клеток с помощью специальных клеточно-мембранных рецепторов. БАВ также модулируют регуляторные влияния, поскольку меняют клеточную чувствительность к нервным и гормональным воздействиям путём изменённого числа клеточных рецепторов и их сходства к различным молекулам, несущих информацию.

    БАВ, образовываясь в разных тканях, воздействуют аутокринно и паракринно, но способны проникать в кровь и действовать системно. Одни из них (кинины) образуются из предшественников в крови плазмы, поэтому эти вещества, при местном действии, даже вызывают распространённый результат, подобный гормональному.

    Физиологическая настройка функций организма осуществляется путём слаженного взаимодействия НС и гуморальной системы. Нервная регуляция и гуморальная осуществляют объединение функций организма для его полноценной функциональности, а человеческий организм работает как одно целое.

    Взаимодействие организма человека с внешнесредовыми условиями осуществляется с помощью активной НС, работоспособность которой определяется рефлексами.


    Каждый организм, безразлично - одноклеточный или многоклеточный, является единым целым. Все его органы тесно связаны друг с другом и управляются общим, точным, слаженным механизмом. Чем выше развит организм, тем сложнее и тоньше устроена, тем большее значение имеет для него нервная система. Но в организме существует и так называемая гуморальная регуляция и координация работы отдельных органов и физиологических систем. Она осуществляется при помощи особых высокоактивных химических веществ, накопляющихся в крови и тканях в процессе жизнедеятельности организма.

    Клетки, ткани, органы выделяют в окружающую тканевую жидкость продукты своего обмена веществ, так называемые метаболиты. Во многих случаях это - простейшие химические соединения, конечные продукты последовательных внутренних превращений, протекающих в живой материи. Образно выражаясь, это "отходы производства". Но нередко такие отходы обладают необычайной активностью и способны вызвать целую цепь новых физиологических процессов, образование новых химических соединений и специфических веществ.

    К числу более сложных продуктов обмена относятся и гормоны, выделяемые в кровь железами внутренней секреции (надпочечниками, гипофизом, щитовидной железой, половыми железами и т.д.), и медиаторы - передатчики нервного возбуждения. Это сильнодействующие химические вещества, обычно довольно сложного состава, участвующие в подавляющем большинстве жизненных процессов. Они оказывают самое решительное влияние на разные стороны деятельности организма: действуют на психическую деятельность, ухудшают или улучшают настроение, стимулируют физическую и умственную работоспособность, возбуждают половую активность. Любовь, зачатие, развитие плода, рост, созревание, инстинкты, эмоции, здоровье, болезни проходят в нашей жизни под знаком эндокринной системы.

    Вытяжки из желез внутренней секреции и химически чистые препараты гормонов, искусственно полученные в лаборатории, применяются при лечении различных заболеваний. Инсулин, кортизон, тироксин, половые гормоны продаются в аптеках. Очищенные и синтетические гормональные препараты приносят огромную пользу людям. Учение о физиологии, фармакологии и патологии органов внутренней секреции превратилось за последние годы в один из важнейших разделов современной биологии.

    Но в живом организме клетки эндокринных желез выбрасывают в кровь не химически чистый гормон, а комплексы веществ, содержащие сложные продукты обмена (белкового, липоидного, углеводного), тесно связанные с активным началом и усиливающие или ослабляющие его действие.

    Все эти неспецифические вещества принимают самое активное участие в гармоническом регулировании жизненных функций организма. Поступая в кровь, лимфу, тканевую жидкость, они играют важную роль в гуморальной регуляции физиологических процессов, осуществляемой через жидкие среды.

    Гуморальная регуляция тесно связана с нервной и образует совместно с ней единый нейро-гуморальный механизм регуляторных приспособлений организма. Нервные и гуморальные факторы столь тесно переплетаются друг с другом, что всякое противопоставление их недопустимо, как и недопустимо расчленение процессов регуляции и координации функций в организме на автономные ионные, вегетативные, анимальные компоненты. Все эти виды регуляции настолько тесно связаны друг с другом, что нарушение одного из них, как правило, дезорганизует и остальные.

    На ранних этапах эволюции, когда нервная система отсутствует, взаимосвязь между отдельными клетками и даже органами осуществляется гуморальным путем. Но по мере развития нервного аппарата, по мере его совершенствования на высших ступенях физиологического развития гуморальная система все больше и больше подчиняется нервной.

    Особенность нервных и гуморальных регуляций

    Механизмы регуляции физиологических функций традиционно подразделяют на нервные и гуморальные, хотя в действительности они образуют единую регуляторную систему, обеспечивающую поддержание гомеостаза и приспособительную деятельность организма. Эти механизмы имеют многочисленные связи как на уровне функционирования нервных центров, так и при передаче сигнальной информации эффекторным структурам. Достаточно сказать, что при осуществлении простейшего рефлекса как элементарного механизма нервных регуляций передача сигнализации с одной клетки на другую осуществляется посредством гуморальных факторов - нейромедиаторов. Чувствительность сенсорных рецепторов к действию раздражителей и функциональное состояние нейронов изменяется под действием гормонов, нейромедиаторов, ряда других биологически активных веществ, а также простейших метаболитов и минеральных ионов (К + , Na + , Ca -+ , С1~). В свою очередь, нервная система может запускать или выполнять коррекцию гуморальных регуляций. Гуморальные регуляции в организме находятся под контролем нервной системы.

    Гуморальные механизмы филогенетически более древние, они имеются даже у одноклеточных животных и приобретают большое разнообразие у многоклеточных и особенно у человека.

    Нервные механизмы регуляций образовались филогенетически и формируются постепенно в онтогенезе человека. Такие регуляции возможны лишь в многоклеточных структурах, имеющих нервные клетки, объединяющиеся в нервные цепи и составляющие рефлекторные дуги.

    Гуморальные регуляции осуществляются путем распространения сигнальных молекул в жидкостях организма по принципу "всем, всем, всем", или принципу "радиосвязи".

    Нервные регуляции осуществляются по принципу "письмо с адресом", или "телеграфной связи". Сигнализация передается от нервных центров к строго определенным структурам, например к точно определенным мышечным волокнам или их группам в конкретной мышце. Только в этом случае возможны целенаправленные, координированные движения человека.

    Гуморальные регуляции, как правило, осуществляются медленнее, чем нервные. Скорость проведения сигнала (потенциала действия) в быстрых нервных волокнах достигает 120 м/с, в то время как скорость транспорта сигнальной молекулы с током крови в артериях приблизительно в 200 раз, а в капиллярах - в тысячи раз меньше.

    Приход нервного импульса к органу-эффектору практически мгновенно вызывает физиологический эффект (например, сокращение скелетной мышцы). Реакция на многие гормональные сигналы более медленная. Например, проявление ответной реакции на действие гормонов щитовидной железы и коры надпочечников происходит через десятки минут и даже часы.

    Гуморальные механизмы имеют преимущественное значение в регуляции процессов обмена веществ, скорости деления клеток, роста и специализации тканей, полового созревания, адаптации к изменению условий внешней среды.

    Нервная система в здоровом организме оказывает влияние на все гуморальные регуляции, осуществляет их коррекцию. Вместе с тем у нервной системы имеются свои специфические функции. Она регулирует жизненные процессы, требующие быстрых реакций, обеспечивает восприятие сигналов, приходящих от сенсорных рецепторов органов чувств, кожи и внутренних органов. Регулирует тонус и сокращения скелетных мышц, которые обеспечивают поддержание позы и перемещение тела в пространстве. Нервная система обеспечивает проявление таких психических функций, как ощущение, эмоции, мотивации, память, мышление, сознание, регулирует поведенческие реакции, направленные на достижение полезного приспособительного результата.

    Гуморальные регуляции подразделяют на эндокринные и местные. Эндокринные регуляции осуществляются благодаря функционированию желез внутренней секреции (эндокринных желез), которые представляют собой специализированные органы, выделяющие гормоны.

    Отличительной особенностью местных гуморальных регуляций является то, что биологически активные вещества, вырабатываемые клеткой, не поступают в кровоток, а действуют на продуцирующую их клетку и ее ближайшее окружение, распространяясь за счет диффузии по межклеточной жидкости. Такие регуляции подразделяют на регуляцию обмена веществ в клетке за счет метаболитов, аутокринию, паракринию, юкстакринию, взаимодействия через межклеточные контакты. Во всех гуморальных регуляциях, осуществляемых с участием специфических сигнальных молекул, важную роль играют клеточные и внутриклеточные мембраны.

    1. Общие свойства гормонов Гормоны - это биологически активные вещества, которые синтезируются в малых количествах в специализированнных клетках эндокринной системы и через циркулирующие жидкости (например, кровь) доставляются к клеткам-мишеням, где оказывают свое регулирующее действие.
    Гормоны, как и другие сигнальные молекулы, обладают некоторыми общими свойствами.
    1) выделяются из вырабатывающих их клеток во внеклеточное пространство;
    2) не являются структурными компонентами клеток и не используются как источник энергии;
    3) способны специфически взаимодействовать с клетками, имеющими рецепторы для данного гормона;
    4) обладают очень высокой биологической активностью - эффективно действуют на клетки в очень низких концентрациях (около 10 -6 -10 -11 моль/л).

    2. Механизмы действия гормонов Гормоны оказывают влияние на клетки-мишени.
    Клетки-мишени - это клетки, которые специфически взаимодействуют с гормонами с помощью специальных белков-рецепторов. Эти белки-рецепторы располагаются на наружной мембране клетки, или в цитоплазме, или на ядерной мембране и на других органеллах клетки.
    Биохимические механизмы передачи сигнала от гормона в клетку-мишень.
    Любой белок-рецептор состоит, минимум из двух доменов (участков), которые обеспечивают выполнение двух функций:
    1) узнавание гормона;
    2) преобразование и передачу полученного сигнала в клетку.
    Каким образом белок-рецептор узнает ту молекулу гормона, с которой он может взаимодействовать?
    Один из доменов белка-рецептора имеет в своем составе участок, комплементарный какой-то части сигнальной молекулы. Процесс связывания рецептора с сигнальной молекулой похож на процесс образования фермент-субстратного комплекса и может определяется величиной константы сродства.
    Большинство рецепторов изучены недостаточно, потому что их выделение и очистка очень сложные, а содержание каждого вида рецепторов в клетках очень низкое. Но известно, что гормоны взаимодействуют со своими рецепторами физико-химическим путем. Между молекулой гормона и рецептором формируются электростатические и гидрофобные взаимодействия. При связывании рецептора с гормоном происходят конформационные изменения белка-рецептора и комплекс сигнальной молекулы с белком-рецептором активируется. В активном состоянии он может вызывать специфические внутриклеточные реакции в ответ на принятый сигнал. Если нарушен синтез или способность белков-рецепторов связываться с сигнальными молекулами, возникают заболевания - эндокринные нарушения. Есть три типа таких заболеваний.
    1. Связанные с недостаточностью синтеза белков-рецепторов.
    2. Связанные с изменением структуры рецептора - генетических дефекты.
    3. Связанные с блокированием белков-рецепторов антителами.

    Механизмы действия гормонов на клетки-мишени В зависимости от строения гормона существуют два типа взаимодействия. Если молекула гормона липофильна, (например, стероидные гормоны), то она может проникать через липидный слой наружной мембраны клеток-мишеней. Если молекула имеет большие размеры или является полярной, то ее проникновение внутрь клетки невозможно. Поэтому для липофильных гормонов рецепторы находятся внутри клеток-мишеней, а для гидрофильных - рецепторы находятся в наружной мембране.
    Для получения клеточного ответа на гормональный сигнал в случае гидрофильных молекул действует внутриклеточный механизм передачи сигнала. Это происходит с участием веществ, которых называют вторыми посредниками. Молекулы гормонов очень разнообразны по форме, а "вторые посредники" - нет.
    Надежность передачи сигнала обеспечивает очень высокое сродство гормона к своему белку-рецептору.
    Что такое посредники, которые участвуют во внутриклеточной передаче гуморальных сигналов?
    Это циклические нуклеотиды (цАМФ и цГМФ), инозитолтрифосфат, кальций-связывающий белок - кальмодулин, ионы кальция, ферменты, участвующие в синтезе циклических нуклеотидов, а также протеинкиназы - ферменты фосфорилирования белков. Все эти вещества участвуют в регуляции активности отдельных ферментных систем в клетках-мишенях.
    Разберем более подробно механизмы действия гормонов и внутриклеточных посредников. Существует два главных способа передачи сигнала в клетки-мишени от сигнальных молекул с мембранным механизмом действия:
    1) аденилатциклазная (или гуанилатциклазная) системы;
    2) фосфоинозитидный механизм.
    Аденилатциклазная система.
    Основные компоненты: мембранный белок-рецептор, G-белок, фермент аденилатциклаза, гуанозинтрифосфат, протеинкиназы.
    Кроме того, для нормального функционирования аденилатциклазной системы, требуется АТФ.
    Белок-рецептор, G-белок, рядом с которым располагаются ГТФ и фермент (аденилатциклаза) встроены в мембрану клетки.
    До момента действия гормона эти компоненты находятся в диссоциированнном состоянии, а после образования комплекса сигнальной молекулы с белком-рецептором происходят изменения конформации G-белка. В результате одна из субъединиц G-белка приобретает способность связываться с ГТФ.
    Комплекс "G-белок-ГТФ" активирует аденилатциклазу. Аденилатциклаза начинает активно превращать молекулы АТФ в ц-АМФ.
    ц-АМФ обладает способностью активировать особые ферменты - протеинкиназы, которые катализируют реакции фосфорилирования различных белков с участием АТФ. При этом в состав белковых молекул включаются остатки фосфорной кислоты. Главным результатом этого процесса фосфорилирования является изменение активности фосфорилированного белка. В различных типах клеток фосфорилированию в результате активации аденилат-циклазной системы подвергаются белки с разной функциональной активностью. Например, это могут быть ферменты, ядерные белки, мембранные белки. В результате реакции фосфорилирования белки могут становятся функционально активными или неактивными.
    Такие процессы будут приводить к изменениям скорости биохимических процессов в клетке-мишени.
    Активация аденилатциклазной систтемы длится очень короткое время, потому что G-белок после связывания с аденилатциклазой начинает проявлять ГТФ-азную активность. После гидролиза ГТФ G-белок восстанавливает свою конформацию и перестает активировать аденилатциклазу. В результате прекращается реакция образования цАМФ.
    Кроме участников аденилатциклазной системы в некоторых клетках-мишенях имеются белки-рецепторы, связанные с G-белками, которые приводят к торможению аденилатциклазы. При этом комплекс "GTP-G-белок" ингибирует аденилатциклазу.
    Когда останавливается образование цАМФ, реакции фосфорилирования в клетке прекращаются не сразу: пока продолжают существовать молекулы цАМФ - будет продолжаться и процесс активации протеинкиназ. Для того, чтобы прекратить действие цАМФ, в клетках существует специальный фермент - фосфодиэстераза, который катализирует реакцию гидролиза 3",5"-цикло-АМФ до АМФ.
    Некоторые вещества, обладающие ингибирующим действием на фосфодиэстеразу, (например, алкалоиды кофеин, теофиллин), способствуют сохранению и увеличению концентрации цикло-АМФ в клетке. Под действием этих веществ в организме продолжительность активации аденилатциклазной системы становится больше, т. е. усиливается действие гормона.
    Кроме аденилатциклазной или гуанилатциклазной систем существует также механизм передачи информации внутри клетки-мишени с участием ионов кальция и инозитолтрифосфата.
    Инозитолтрифосфат - это вещество, которое является производным сложного липида - инозитфосфатида. Оно образуется в результате действия специального фермента - фосфолипазы "С", который активируется в результате конформационных изменений внутриклеточного домена мембранного белка-рецептора.
    Этот фермент гидролизует фосфоэфирную связь в молекуле фосфатидил-инозитол-4,5-бисфосфата и в результате образуются диацилглицерин и инозитолтрифосфат.
    Известно, что образование диацилглицерина и инозитолтрифосфата приводит к увеличению концентрации ионизированного кальция внутри клетки. Это приводит к активации многих кальций-зависимых белков внутри клетки, в том числе активируются различные протеинкиназы. И здесь, как и при активации аденилатциклазной системы, одной из стадий передачи сигнала внутри клетки является фосфорилирование белков, которое в приводит к физиологическому ответу клетки на действие гормона.
    В работе фосфоинозитидного механизма передачи сигналов в клетке-мишени принимает участие специальный кальций-связывающий белок - кальмодулин. Это низкомолекулярный белок (17 кДа), на 30 % состоящий из отрицательно заряженных аминокислот (Глу, Асп) и поэтому способный активно связывать Са +2 . Одна молекула кальмодулина имеет 4 кальций-связывающих участка. После взаимодействия с Са +2 происходят конформационные изменения молекулы кальмодулина и комплекс "Са +2 -кальмодулин" становится способным регулировать активность (аллостерически угнетать или активировать) многие ферменты - аденилатциклазу, фосфодиэстеразу, Са +2 ,Мg +2 -АТФазу и различные протеинкиназы.
    В разных клетках при воздействии комплекса "Са +2 -кальмодулин" на изоферменты одного и того же фермента (например, на аденилатциклазу разного типа) в одних случаях наблюдается активация, а в других - ингибирование реакции образования цАМФ. Такие различные эффекты происходят потому, что аллостерические центры изоферментов могут включать в себя различные радикалы аминокислот и их реакция на действие комплекса Са +2 -кальмодулин будет отличаться.
    Таким образом, в роли "вторых посредников" для передачи сигналов от гормонов в клетках-мишенях могут быть:
    1) циклические нуклеотиды (ц-АМФ и ц-ГМФ);
    2) ионы Са;
    3) комплекс "Са-кальмодулин";
    4) диацилглицерин;
    5) инозитолтрифосфат.
    Механизмы передачи информации от гормонов внутри клеток-мишеней с помощью перечисленных посредников имеют общие черты:
    1) одним из этапов передачи сигнала является фосфорилирование белков;
    2) прекращение активации происходит в результате специальных механизмов, инициируемых самими участниками процессов, - существуют механизмы отрицательной обратной связи.
    Гормоны являются основными гуморальными регуляторами физиологических функций организма, и в настоящее время хорошо известны их свойства, процессы биосинтеза и механизмы действия.
    Признаки, по которым гормоны отличаются от других сигнальных молекул следующие.
    1. Синтез гормонов происходит в особых клетках эндокринной системы. При этом синтез гормонов является основной функцией эндокринных клеток.
    2. Гормоны секретируются в кровь, чаще в венозную, иногда в лимфу. Другие сигнальные молекулы могут достигать клеток-мишеней без секреции в циркулирующие жидкости.
    3. Телекринный эффект (или дистантное действие) - гормоны действуют на клетки-мишени на больщом расстоянии от места синтеза.
    Гормоны являются высокоспецифичными веществами по отношению к клеткам-мишеням и обладают очень высокой биологической активностью.
    3. Химическая структура гормонов Строение гормонов бывает разным. В настоящее время описано и выделено около 160 различных гормонов из разных многоклеточных организмов. По химическому строению гормоны можно классифицировать по трем классам:
    1) белково-пептидные гормоны;
    2) производные аминокислот;
    3) стероидные гормоны.
    К первому классу относятся гормоны гипоталамуса и гипофиза (в этих железах синтезируются пептиды и некоторые белки), а также гормоны поджелудочной и паращитовидной желез и один из гормонов щитовидной железы.
    Ко второму классу относятся амины, которые синтезируются в мозговом слое надпочечников и в эпифизе, а также иод-содержащие гормоны щитовидной железы.
    Третий класс - это стероидные гормоны, которые синтезируются в коре надпочечников и в половых железах. По количеству углеродных атомов стероиды отличаются друг от друга:
    С 21 - гормоны коры надпочечников и прогестерон;
    С 19 - мужские половые гормоны - андрогены и тестостерон;
    С 18 - женские половые гормоны - эстрогены.
    Общим для всех стероидов является наличие стеранового ядра.
    4. Механизмы действия эндокринной системы Эндокринная система - совокупность желез внутренней секреции и некоторых специализированных эндокринных клеток в составе тканей, для которых эндокринная функция не является единственной (например, поджелудочная железа обладает не только эндокринной, но и экзокринной функциями). Любой гормон является одним из ее участников и управляет определенными метаболическими реакциями. При этом внутри эндокринной системы существуют уровни регуляции - одни железы обладают способностью управлять другими.

    Общая схема реализации эндокринных функций в организме Данная схема включает в себя высшие уровни регуляции в эндокринной системе - гипоталамус и гипофиз, вырабатывающие гормоны, которые сами влияют на процессы синтеза и секреции гормонов других эндокринных клеток.
    Из этой же схемы видно, что скорость синтеза и секреции гормонов может изменяться также под действием гормонов из других желез или в результате стимуляции негормональными метаболитами.
    Мы видим также наличие отрицательных обратных связей (-) - торможение синтеза и(или) секреции после устранения первичного фактора, вызвавшего ускорение продукции гормона.
    В результате содержание гормона в крови поддерживается на определенном уровне, который зависит от функционального состояния организма.
    Кроме того, организм обычно создает небольшой резерв отдельных гормонов в крови (на представленной схеме этого не видно). Существование такого резерва возможно потому, что в крови многие гормоны находятся в связанном со специальными транспортными белками состоянии. Например, тироксин связан с тироксин-связывающим глобулином, а глюкокортикостероиды - с белком транскортином. Две формы таких гормонов - связанная с транспортными белками и свободная - находятся в крови в состоянии динамического равновесия.
    Это значит, что при разрушении свободных форм таких гормонов будет происходить диссоциация связанной формы и концентрация гормона в крови будет поддерживаться на относительно постоянном уровне. Таким образом, комплекс какого-либо гормона с транспортным белком может рассматриваться как резерв этого гормона в организме.

    Эффекты, которые наблюдаются в клетках-мишенях под влиянием гормонов Очень важно, что гормоны не вызывают никаких новыхметаболических реакций в клетке-мишени. Они лишь образуют комплекс с белком-рецептором. В результате передачи гормонального сигнала в клетке-мишени происходит включение или выключение клеточных реакций, обеспечивающих клеточный ответ.
    При этом в клетке-мишени могут наблюдаются следующие основные эффекты:
    1) изменение скорости биосинтеза отдельных белков (в том числе белков-ферментов);
    2) изменение активности уже существующих ферментов (например, в результате фосфорилирования - как уже было показано на примере аденилатциклазной системы;
    3) изменение проницаемости мембран в клетках-мишенях для отдельных веществ или ионов (например, для Са +2).
    Уже было сказано о механизмах узнавания гормонов - гормон взаимодействует с клеткой-мишенью только при наличии специального белка-рецептора. Связывание гормона с рецептором зависит от физико-химических параметров среды - от рН и концентрации различных ионов.
    Особое значение имеет количество молекул белка-рецептора на наружной мембране или внутри клетки-мишени. Оно изменяется в зависимости от физиологического состояния организма, при заболеваниях или под влиянием лекарственных средств. А это означает, что при разных условиях и реакция клетки-мишени на действие гормона будет различной.
    Разные гормоны обладают различными физико-химическими свойствами и от этого зависит местонахождение рецепторов для определенных гормонов. Принято различать два механизма взаимодействия гормонов с клетками-мишенями:
    1) мембранный механизм - когда гормон связывается с рецептором на поверхности наружной мембраны клетки-мишени;
    2) внутриклеточный механизм - когда рецептор для гормона находится внутри клетки, т. е. в цитоплазме или на внутриклеточных мембранах.
    Гормоны обладающие мембранным механизмом действия:
    1) все белковые и пептидные гормоны, а также амины (адреналин, норадреналин).
    Внутриклеточным механизмом действия обладают:
    1) стероидные гормоны и производные аминокислот - тироксин и трийодтиронин.
    Передача гормонального сигнала на клеточные структуры происходит по одному из механизмов. Например, через аденилатциклазную систему или с участием Са +2 и фосфоинозитидов. Это справедливо для всех гормонов с мембранным механизмом действия. Но стероидные гормоны с внутриклеточным механизмом действия, которые обычно регулируют скорость биосинтеза белков и имеют рецептор на поверхности ядра клетки-мишени, не нуждаются в дополнительных посредниках в клетке.

    Особенности строения белков-рецепторов для стероидов Наиболее изученным является рецептор для гормонов коры надпочечников - глюкокортикостероидов (ГКС). В этом белке имеется три функциональных участка:
    1 - для связывания с гормоном (С-концевой);
    2 - для связывания с ДНК (центральный);
    3 - антигенный участок, одновременно способный модулировать функцию промотора в процессе транскрипции (N-концевой).
    Функции каждого участка такого рецептора ясны из их названий очевидно, что такое строение рецептора для стероидов позволяет им влиять на скорость транскрипции в клетке. Это подтверждается тем, что под действием стероидных гормонов избирательно стимулируется (или тормозится) биосинтез некоторых белков в клетке. В этом случае наблюдается ускорение (или замедление) образования мРНК. В результате изменяется количество синтезируемых молекул определенных белков (часто - ферментов) и меняется скорость метаболических процессов.

    5. Биосинтез и секреция гормонов различного строения Белково-пептидные гормоны. В процессе образования белковых и пептидных гормонов в клетках эндокринных желез происходит образование полипептида, не обладающего гормональной активностью. Но такая молекула в своем составе имеет фрагмент(ы), содержащий(е) аминокислотную последовательность данного гормона. Такая белковая молекула называется пре-про-гормоном и имеет в своем составе (обычно на N-конце) структуру, которая называется лидерной или сигнальной последовательностью (пре-). Эта структура представлена гидрофобными радикалами и нужна для прохождения этой молекулы от рибосом через липидные слои мембран внутрь цистерн эндоплазматического ретикулума (ЭПР). При этом, во время перехода молекулы через мембрану в результате ограниченного протеолиза лидерная (пре-) последовательность отщепляется и внутри ЭПР оказывается прогормон. Затем через систему ЭПР прогормон транспортируется в комплекс Гольджи и здесь заканчивается созревание гормона. Вновь в результате гидролиза под действием специфических протеиназ отщепляется оставшийся (N-концевой) фрагмент (про-участок). Образованная молекула гормона, обладающая специфической биологической активностью поступает в секреторные пузырьки и накапливается до момента секреции.
    При синтезе гормонов из числа сложных белков гликопротеинов (например, фолликулостимулирующего (ФСГ) или тиреотропного (ТТГ) гормонов гипофиза) в процессе созревания происходит включение углеводного компонента в структуру гормона.
    Может происходить и внерибосомальный синтез. Так синтезируется трипептид тиролиберин (гормон гипоталамуса).
    Гормоны - производные аминокислот. Из тирозина синтезируются гормоны мозгового слоя надпочечников адреналин и норадреналин, а также йодсодержащие гормоны щитовидной железы. В ходе синтеза адреналина и норадреналина тирозин подвергается гидроксилированию, декарбоксилированию и метилированию с участием активной формы аминокислоты метионина.
    В щитовидной железе происходит синтез йодсодержащих гормонов трийодтиронина и тироксина (тетрайодтиронина). В ходе синтеза происходит йодирование фенольной группы тирозина. Особый интерес представляет метаболизм иода в щитовидной железе. Молекула гликопротеина тиреоглобулина (ТГ) имеет молекулярную массу более 650 кДа. При этом в составе молекулы ТГ около 10 % массы - углеводы и до 1 % - йод. Это зависит от количества иода в пище. В полипептиде ТГ - 115 остатков тирозина, которые иодируются окисленным с помощью специального фермента - тиреопероксидазы - йодом. Эта реакция называется органификацией йода и происходит в фолликулах щитовидной железы. В результате из остатков тирозина образуются моно- и ди-иодтирозин. Из них примерно 30 % остатков в результате конденсации могутпревратитьться в три- и тетра- иодтиронины. Конденсация и иодирование идут с участием одного и того же фермента - тиреопероксидазы. Дальнейшее созревание гормонов щитовидной железы происходит в железистых клетках - ТГ поглощается клетками путем эндоцитоза и образуется вторичная лизосома в результате слияния лизосомы с поглощенным белком ТГ.
    Протеолитические ферменты лизосом обеспечивают гидролиз ТГ и образование Т 3 и Т 4 , которые выделяются во внеклеточное пространство. А моно- и дииодтирозин деиодируются с помощью специального фермента деиодиназы и иод повторно может подвергаться органификации. Для синтеза тиреоидных гормонов характерным является механизм торможения секреции по типу отрицательной обратной связи (Т 3 и Т 4 угнетают выделение ТТГ).

    Стероидные гормоны Стероидные гормоны синтезируются из холестерина (27 углеродных атомов), а холестерин синтезируется из ацетил-КоА.
    Холестерин превращается в стероидные гормоны в результате следующих реакций:
    1) отщепление бокового радикала;
    2) образование дополнительных боковых радикалов в результате реакции гидроксилирования с помощью специальных ферментов монооксигеназ (гидроксилаз) - чаще всего в 11-м, 17-м, и 21-м положениях (иногда в 18-м). На первом этапе синтеза стероидных гормонов сначала образуются предшественники (прегненолон и прогестерон), а затем другие гормоны (кортизол, альдостерон, половые гормоны). Из кортикостероидов могут образоваться альдостерон, минералокортикоиды.

    Секреция гормонов Регулируется со стороны ЦНС. Синтезированные гормоны накапливаются в секреторных гранулах. Под действием нервных импульсов или под влиянием сигналов из других эндокринных желез (тропные гормоны) в результате экзоцитоза происходит дегрануляция и выход гормона в кровь.
    Механизмы регуляции в целом были представлены в схеме механизма реализации эндокринной функции.

    6. Транспорт гормонов Транспорт гормонов определяется их растворимостью. Гормоны, имеющие гидрофильную природу (например, белково-пептидные гормоны) обычно транспортируются кровью в свободном виде. Стероидные гормоны, йодсодержащие гормоны щитовидной железы транспортируются в виде комплексов с белками плазмы крови. Это могут быть специфические транспортные белки (транспортные низкомолекулярные глобулины, тироксинсвязывающий белок; транспортирующий кортикостероиды белок транскортин) и неспецифический транспорт (альбумины).
    Уже говорилось о том, что концентрация гормонов в кровяном русле очень низка. И может меняться в соответствии с физиологическим состоянием организма. При снижении содержания отдельных гормонов развивается состояние, характеризуемое как гипофункция соответствующей железы. И, наоборот, повышение содержания гормона - это гиперфункция.
    Постоянство концентрации гормонов в крови обеспечивается также процессами катаболизма гормонов.
    7. Катаболизм гормонов Белково-пептидные гормоны подвергаются протеолизу, распадаются до отдельных аминокислот. Эти аминокислоты вступают дальше в реакции дезаминирования, декарбоксилирования, трансаминирования и распадаются до до конечных продуктов: NH 3 , CO 2 и Н 2 О.
    Гормоны подвергаются окислительному дезаминированию и дальнейшему окислению до СО 2 и Н 2 О. Стероидные гормоны распадаются иначе. В организме нет ферментных систем, которые обеспечивали бы их распад.
    В основном происходит модификация боковых радикалов. Вводятся дополнительные гидроксильные группы. Гормоны становятся более гидрофильными. Образуются молекулы, представляющие собой структуру стерана, у которого в 17-м положении находится кетогруппа. В таком виде продукты катаболизма стероидных половых гормонов выводятся с мочой и называются 17-кетостероиды. Определение их количества в моче и крови показывает содержание в организме половых гормонов.

    55.Железами внутренней секреции , или эндокринными органами, называются железы, не имеющие выводных протоков. Они вырабатывают особые вещества - гормоны, поступающие непосредственно в кровь.

    Гормоны - органические вещества различной химической природы: пептидные и белковые (к белковым гормонам относятся инсулин, соматотропин, пролактин и др), производные аминокислот (адреналин, норадреналин, тироксин, трииодтиронин), стероидные (гормоны половых желез и коры надпочечников). Гормоны обладают высокой биологической активностью (поэтому вырабатываются в чрезвычайно малых дозах), специфичностью действия, дистантным воздействием, т. е. влияют на органы и ткани, расположенные вдали от места образования гормонов. Поступая в кровь, они разносятся по всему организму и осуществляют гуморальную регуляцию функций органов и тканей, изменяя их деятельность, возбуждая или тормозя их работу. Действие гормонов основано на стимуляции или угнетении каталитической функции некоторых ферментов, а также воздействии на их биосинтез путем активации или угнетения соответствующих генов.

    Деятельность желез внутренней секреции играет основную роль в регуляции длительно протекающих процессов: обмена веществ, роста, умственного, физического и полового развития, приспособления организма к меняющимся условиям внешней и внутренней среды, обеспечении постоянства важнейших физиологических показателей (гомеостаза), а также в реакциях организма на стресс. При нарушении деятельности желез внутренней секреции возникают заболевания, называемые эндокринными. Нарушения могут быть связаны либо с усиленной (по сравнению с нормой) деятельностью железы - гиперфункцией , при которой образуется и выделяется в кровь увеличенное количество гормона, либо с пониженной деятельностью железы - гипофункцией , сопровождаемой обратным результатом.

    Внутрисекреторная деятельность важнейших эндокринных желез. К важнейшим железам внутренней секреции относятся щитовидная, надпочечники, поджелудочная, половые, гипофиз. Эндокринной функцией обладает и гипоталамус (подбугровая область промежуточного мозга). Поджелудочная железа и половые железы являются железами смешанной секреции, так как кроме гормонов они вырабатывают секреты, поступающие по выводным протокам, т. е. выполняют функции и желез внешней секреции.

    Щитовидная железа (масса 16-23 г) расположена по бокам трахеи чуть ниже щитовидного хряща гортани. Гормоны Щитовидной железы (тироксин и трииодтиронин) в своем составе имеют йод, поступление которого с водой и пищей является необходимым условием ее нормального функционирования.

    Гормоны щитовидной железы регулируют обмен веществ, усиливают окислительные процессы в клетках и расщепление гликогена в печени, влияют на рост, развитие и дифференцировку тканей, а также на деятельность нервной системы. При гиперфункции железы развивается базедова болезнь. Ее основные признаки: разрастание ткани железы (зоб), пучеглазие, учащенное сердцебиение, повышенная возбудимость нервной системы, повышение обмена веществ, потеря веса. Гипофункция железы у взрослого человека приводит к развитию микседемы (слизистый отек), проявляющейся в снижении обмена веществ и температуры тела, увеличении массы тела, отечности и одутловатости лица, нарушении психики. Гипофункция железы в детском возрасте вызывает задержку роста и развитие карликовости, а также резкое отставание умственного развития (кретинизм).

    Надпочечники (масса 12 г) - парные железы, прилегающие к верхним полюсам почек. Как и почки, надпочечники имеют два слоя: наружный - корковый, и внутренний - мозговой, являющиеся самостоятельными секреторными органами, вырабатывающими разные гормоны с различным характером действия. Клетками коркового слоя синтезируются гормоны, регулирующие минеральный, углеводный, белковый и жировой обмен. Так, при их участии регулируется уровень натрия и калия в крови, поддерживается определенная концентрация глюкозы в крови, увеличивается образование и отложение гликогена в печени и мышцах. Последние две функции надпочечники выполняют совместно с гормонами поджелудочной железы.

    При гипофункции коркового слоя надпочечников развивается бронзовая, или Аддисонова, болезнь. Ее признаки: бронзовый оттенок кожи, мышечная слабость, повышенная утомляемость, понижение иммунитета. Мозговым слоем надпочечников вырабатываются гормоны адреналин и норадреналин. Они выделяются при сильных эмоциях - гневе, испуге, боли, опасности. Поступление этих гормонов в кровь вызывает учащенное сердцебиение, сужение кровеносных сосудов (кроме сосудов сердца и головного мозга), повышение артериального давления, усиление расщепления гликогена в клетках печени и мышц до глюкозы, угнетение перистальтики кишечника, расслабление мускулатуры бронхов, повышение возбудимости рецепторов сетчатки, слухового и вестибулярного аппаратов. В результате происходит перестройка функций организма в условиях действия чрезвычайных раздражителей и мобилизация сил организма для перенесения стрессовых ситуаций.

    Поджелудочная железа имеет особые островковые клетки, которые вырабатывают гормоны инсулин и глюкагон, регулирующие углеводный обмен в организме. Так, инсулин увеличивает потребление глюкозы клетками, способствует превращению глюкозы в гликоген, уменьшая, таким образом, количество сахара в крови. Благодаря действию инсулина содержание глюкозы в крови поддерживается на постоянном уровне, благоприятном для протекания процессов жизнедеятельности. При недостаточном образовании инсулина уровень глюкозы в крови повышается, что приводит к развитию болезни сахарный диабет. Не использованный организмом сахар выводится с мочой. Больные пьют много воды, худеют. Для лечения этого заболевания необходимо вводить инсулин. Другой гормон поджелудочной железы - глюкагон -является антагонистом инсулина и оказывает противоположное действие, т. е. усиливает расщепление гликогена до глюкозы, повышая ее содержание в крови.

    Важнейшей железой эндокринной системы организма человека является гипофиз , или нижний придаток мозга (масса 0,5 г). В нем образуются гормоны, стимулирующие функции других эндокринных желез. В гипофизе выделяют три доли: переднюю, среднюю и заднюю, - и каждая из них вырабатывает разные гормоны. Так, в передней доле гипофиза вырабатываются гормоны, стимулирующие синтез и секрецию гормонов щитовидной железы (тиреотропин), надпочечников (кортикотропин), половых желез (гонадотропин), а также гормон роста (соматотропин).

    При недостаточной секреции соматотропина у ребенка тормозится рост и развивается заболевание гипофизарная карликовость (рост взрослого человека не превышает 130 см). При избытке гормона, наоборот, развивается гигантизм. Повышенная секреция соматотропина у взрослого вызывает болезнь акромегалию, при которой разрастаются отдельные части тела - язык, нос, кисти рук. Гормоны задней доли гипофиза усиливают обратное всасывание воды в почечных канальцах, уменьшая мочеотделение (антидиуретический гормон), усиливают сокращения гладких мышц матки (окситоцин).

    Половые железы - семенники, или яички, у мужчин и яичники у женщин - относятся к железам смешанной секреции. Семенники вырабатывают гормоны андрогены, а яичники - эстрогены. Они стимулируют развитие органов размножения, созревание половых клеток и формирование вторичных половых признаков, т. е. особенностей строения скелета, развития мускулатуры, распределения волосяного покрова и подкожного жира, строения гортани, тембра голоса и др. у мужчин и женщин. Влияние половых гормонов на формообразовательные процессы особенно наглядно проявляется у животных при удалении половых желез (кастрацин) или их пересадке. Внешнесекреторная функция яичников и семенников заключается в образовании и выведении по половым протокам яйцеклеток и сперматозоидов соответственно.

    Гипоталамус . Функционирование желез внутренней секреции, в совокупности образующих эндокринную систему, осуществляется в тесном взаимодействии друг с другом и взаимосвязи с нервной системой. Вся информация из внешней и внутренней среды организма человека поступает в соответствующие зоны коры больших полушарий и другие отделы мозга, где осуществляется ее переработка и анализ. От них информационные сигналы передаются в гипоталамус - подбугровую зону промежуточного мозга, и в ответ на них он вырабатывает регуляторные гормоны, поступающие в гипофиз и через него оказывающие свое регулирующее воздействие на деятельность желез внутренней секреции. Таким образом, гипоталамус выполняет координирующую и регулирующую функции в деятельности эндокринной системы человека

    В организме человека существует несколько регуляторных систем, обеспечивающих нормальное функционирование организма. К этим системам, в частности, следует отнести железы внутренней и внешней секреции.

    Нарушить баланс в организме достаточно легко. Специалисты рекомендуют избегать факторов, провоцирующих дисбаланс.

    Железы внешней секреции (экзокринные) осуществляют выделение разных веществ во внутреннюю среду организма и на поверхность тела. Они формируют индивидуальный и видовой запах. Кроме того, железы внешней секреции обеспечивают защиту от проникновения в организм вредоносных микроорганизмов. Их отделяемое (секрет) обладает микостатическим и бактерицидным воздействием.

    Железы внешней секреции (слюнные, слезные, потовые, молочные, половые) участвуют в регулировании внутривидовых и межвидовых взаимоотношений. Это главным образом связано с тем, что их отделяемое наделено функцией метаболически или информационно влиять на окружающие внешние организмы.

    Во рту находятся малые и большие слюнные железы внешней секреции. Их протоки открываются в ротовую полость. Малые железы расположены в подслизистой основе или толще слизи. В соответствии с расположением выделяют язычные, небные, молярные, губные. В зависимости от характера их отделяемого, их разделяют на слизистые, серозные и смешанные. Недалеко от них располагается щитовидная железа внутренней секреции. Она накапливает и секретирует йодсодержащие гормоны.

    Большими слюнными железами называют парные органы, которые расположены за пределами ротовой полости. К ним относят подъязычную, поднижнечелюстную и околоушную.

    Смесь отделяемого слюнных желез называется слюной. Секреторные процессы протекают в период гормональной перестройки организма (в двенадцать - четырнадцать лет) наиболее интенсивно.

    Молочные железы представляют собой (по происхождению) видоизмененные потовые железы кожи и закладываются на шестой-седьмой неделе. Сначала они выглядят как два уплотнения эпидермиса. Впоследствии из них начинают формироваться "молочные точки".

    До наступления периода половозрелости молочные железы девочек находятся в состоянии покоя. Разрастание разветвлений происходит у обоих полов. С наступлением зрелости начинаются резкие изменения в темпах развития молочных желез. У мальчиков скорость их развития замедляется, а затем и вовсе прекращается. У девочек же развитие ускоряется. К началу первой менструации образуются концевые отделы. Однако следует отметить, что молочная железа у женщин продолжает развиваться вплоть до беременности. Окончательное ее формирование происходит в период лактации.

    Самой массивной пищеварительной железой человека является печень. Вес ее (у взрослого) - от одного до полутора килограмм. Кроме того, что печень участвует в углеводном, витаминном, белковом и жировом обмене, она выполняет защитную, желчеобразующую и прочие функции. При внутриутробном развитии этот орган является еще и кроветворным.

    Потовые железы кожи вырабатывают пот. Они участвуют в процессе терморегуляции, формируют индивидуальный запах. Представляют собой эти железы простые трубки со свернутыми концевыми частями. В каждой потовой железе есть концевая часть (тело), потовый проток. Последний открывается наружу порой.

    Потовые железы имеют отличия по функциональному значению и морфологическим признакам, а также по развитию. Располагаются они в подкожной клетчатке (соединительной). В среднем у человека насчитывается около двух - трех с половиной миллионов потовых желез. Их морфологическое развитие завершается приблизительно к семи годам.

    Сальные железы достигают пика своего развития при половом созревании. Практически все они связаны с волосами. На участках, где волосяной покров отсутствует, сальные железы лежат самостоятельно. Их отделяемое – сало – служит смазкой для волос и кожи. В сутки в среднем из них выделяется порядка двадцати грамм сала.

    58Тимус (thymus, или, как раньше называли этот орган, вилочковая железа, зобная железа) является, как и костный мозг, центральным органом иммуногенеза. Стволовые клетки, проникающие в тимус из костного мозга с током крови, пройдя ряд промежуточных стадий, превращаются в Т-лимфоциты, ответственные за реакции клеточного иммунитета. В дальнейшем Т-лимфоциты поступают в кровь, покидают тимус и заселяют ти-мусзависимые зоны периферических органов иммуногенеза. Ретикулоэпителиоциты тимуса секретируют биологически активные вещества, получившие название тимического (гуморального) фактора. Эти вещества влияют на функции Т-лимфоцитов.

    Тимус состоит из двух асимметричных по величине долей: поавой доли (lobus dexter) и левой доли (lobus sinister). Обе доли могут быть сращены или тесно соприкасаются друг с другом на уровне середины. Нижняя часть каждой доли расширена, а верхняя сужена. Нередко верхние части выступают в области шеи в виде двузубой вилки (отсюда название «вилочковая железа»). Левая доля тимуса примерно в половине случаев длиннее правой. В период своего максимального развития (10-15 лет) масса тимуса достигает в среднем 37,5 г, а длина составляет 7,5-16,0 см.

    Топография тимуса (вилочковой железы)

    Тимус располагается в передней части верхнего средостения, между правой и левой медиастинальной плеврой. Положение тимуса соответствует верхнему межплевральному полю при проекции границ плевры на переднюю грудную стенку. Верхняя часть тимуса нередко заходит в нижние отделы предтрахеального межфасциального промежутка и лежит позади грудино-подъязычных и грудино-щитовидных мышц. Передняя поверхность тимуса выпуклая, прилежит к задней поверхности рукоятки и тела грудины (до уровня IV реберного хряща). Позади тимуса находятся верхняя часть перикарда, покрывающего спереди начальные отделы аорты и легочного ствола, дуга аорты с отходящими от нее крупными сосудами, левая плечеголовная и верхняя полая вены.

    Строение тимуса (вилочковой железы)

    Тимус имеет нежную тонкую соединительнотканную капсулу (capsula thymi), от которой внутри органа, в его корковое вещество, отходят междольковые перегородки (septa corticales), разделяющие вещество тимуса на дольки (lobuli thymi). Паренхима тимуса состоит из более темного коркового вещества (cortex thymi) и более светлого мозгового вещества (medulla thymi), занимающего центральную часть долек.

    Строма тимуса представлена ретикулярной тканью и звездчатой формы многоотростчатыми эпителиальными клетками - эпителиоретикулоцитами тимуса.

    В петлях сети, образованной ретикулярными клетками и ретикулярными волокнами, а также эпителиоретикулоцитами, располагаются лимфоциты тимуса (тимоциты).

    В мозговом веществе имеются плотные тельца тимуса (corpuscula thymici, тельца Гассаля), образованные концентрически расположенными, сильно уплощенными эпителиальными клетками.