Домой / Гастрит / Специалист раздражающее рентгеновское облучение арау. Рентгеновское излучение и меры защиты

Специалист раздражающее рентгеновское облучение арау. Рентгеновское излучение и меры защиты

Коми филиал Кировской государственной медицинской академии

Дисциплина Гигиена

РЕФЕРАТ

Рентгеновское излучение в медицине и меры защиты
персонала и пациентов

Исполнитель: Репин К. В. 304 гр.

Преподаватель: Зеленов В. А.

Сыктывкар, 2007

История открытия рентгеновских лучей. 3

Средства индивидуальной и коллективной защиты в рентгенодиагностике. 6

Дозовые нагрузки на население и персонал при проведении медицинских рентгенологических исследований и основные пути их оптимизации.. 11

История открытия рентгеновских лучей.

На пороге XX столетия были сделаны два важных открытия, заново перестроивших наши знания во многих отраслях науки и техники - это открытие лучей Рентгена 8 ноября 1895 г. и последовавшее за ним в 1896 г. открытие Беккерелем радиоактивности.

О том впечатлении, которое произвело на мировую общественность открытие Рентгена, свидетельствует следующее высказывание московского физика П. Н. Лебедева, который в мае 1896 г. писал: "Еще никогда ни одно открытие в области физики не встречало такого всеобщего интереса и не было так обстоятельно обсуждаемо в периодической печати, как открытие Рентгеном нового, до той поры неизвестного рода лучей”.

Вильгельм-Конрад Рентген родился 27 марта 1845 г. в Лениепе, маленьком городке в Германии. Будучи уже в одном из старших классов гимназии, он был исключен из нее за то, что отказался выдать товарища, нарисовавшего на доске карикатуру на нелюбимого педагога. Не имея аттестата зрелости, Рентген не мог попасть в университет и поступил сначала в машиностроительное училище, а затем в Цюрихский политехнический институт.

Получив в 1868 г. диплом инженера машиностроения, Рентген принимает предложение физика Кундта и становится его ассистентом, посвятив всю свою жизнь научно-педагогической деятельности. В 1869 г. он получает ученую степень доктора наук, а в 1875г., в возрасте тридцати лет, избирается профессором физики и математики в Сельскохозяйственную академию в Хохенхейме. В 1888г. по приглашению старейшего университета Германии в Вюрцбурге Рентген занимает должность ординарного профессора физики и заведующего физическим институтом.

В течение более чем пятидесятилетней научной деятельности Рентген напечатал около 50 работ, посвященных различным разделам физики. Будучи уже ученым с мировым именем, он не оставляет педагогической деятельности и продолжает читать лекции по экспериментальной физике. Только в возрасте 70 лет Рентген оставляет кафедру, продолжая научную деятельность почти до последних дней жизни в должности заведующего Институтом физики и метрологии в Мюнхене.

Характерными чертами Рентгена как человека были его исключительная скромность, сдержанность и замкнутость. Так, в своей лаборатории он до самой смерти запрещал называть открытые им лучи рентгеновыми лучами, а только "Х-лучами" (X-Rays), несмотря на состоявшееся в 1906 г. решение Первого международного съезда по рентгенологии о присвоении им наименования лучей Рентгена.

Требовательный и строго принципиальный в научно-исследовательской работе, он был прямолинеен и принципиален также и в жизни, независимо от того, с кем ему приходилось встречаться. Вместе с тем простота и скромность не покидали его и тогда, когда он стал одним из величайших людей в истории человечества. Исключительным было отношение Рентгена к студенческой молодежи.

Рентген тяжело переживал первую империалистическую войну и отношение всего мира к немцам, признавая неправоту официальных германских кругов. Противники Германии в начале войны вычеркнули и его имя из списка мировых ученых. Сам же Рентген находил себе утешение в том, что его открытие в большой мере способствовало смягчению страданий множества раненых, а многим спасло жизнь, что в еще большей степени выявилось в период второй мировой войны.

Рентген скончался 10 февраля 1923 г., на 78 году жизни. Свыше ста наград и почетных званий во всех странах мира было присуждено ему за его открытие, в том числе от Общества русских врачей в Санкт-Петербурге, Общества врачей в Смоленске, от Новороссийского университета в Одессе. Во многих городах его именем были названы улицы. Советское правительство, признавая великие заслуги Рентгена перед наукой и человечеством, воздвигло ему еще при жизни памятник перед зданием Рентгенологического института в Ленинграде; его именем была названа улица, на которой находится этот институт.

Свое открытие Рентген совершил в процессе исследования особого рода лучей, известных под названием катодных, которые возникают при электрическом разряде в трубках с сильно разреженным газом.

Наблюдая в затемненной комнате свечение флуоресцирующего экрана - картона, покрытого платиносинеродистым барием, - вызываемое потоком катодных лучей, выходящих из трубки через окошечко, Рентген вдруг заметил, что при прохождении тока через трубку расположенные поодаль на столе кристаллы платиносинеродистого бария также светятся. Естественно, он предположил, что свечение кристаллов вызывается видимым светом, который испускала трубка. Чтобы проверить это, Рентген обернул трубку черной бумагой; однако свечение кристаллов продолжалось. Чтобы решить другой вопрос - катодные ли лучи вызывают свечение экрана или другие, еще дотоле неизвестные лучи, Рентген отодвинул экран на значительное расстояние; свечение не прекращалось. Так как было известно, что катодные лучи могут проходить в воздухе лишь несколько миллиметров, а в своих опытах Рентген далеко превзошел пределы этой толщины слоя воздуха, то он заключил, что либо полученные им катодные лучи обладают такой проникающей способностью, какую до него никто еще не получал, либо это должны были быть какие-то другие, еще неизвестные лучи.

В процессе исследования Рентген поставил по ходу лучей книгу; свечение экрана стало несколько менее ярким, но все же продолжалось. Пропуская таким же образом лучи сквозь дерево и различные металлы, он заметил, что интенсивность свечения экрана была то более сильная, то ослабевала. Когда же на пути прохождения лучей были поставлены платиновая и свинцовая пластинки, то свечение экрана не наблюдалось совсем. Тогда у него мелькнула мысль поставить на пути лучей свою кисть, и на экране он увидел четкое изображение костей на фоне менее четкого изображения мягких тканей. Чтобы зафиксировать все то, что он видел, Рентген заменил флуоресцирующий картон фотографической пластинкой и получил на ней теневое изображение тех предметов, которые ставились между трубкой и фотопластинкой; в частности, после 20-минутного облучения своей кисти он получил также и ее изображение на фотографической пластинке.

Рентген понял, что перед ним новое, дотоле неизвестное явление природы; оставив все другие занятия, он после двух месяцев работы сумел дать ему столь исчерпывающее объяснение, подтвержденное рядом собранных им фактов, что в течение последующих 17 лет в тысячах работ, посвященных его открытию, не было сказано ничего принципиально нового. Почти все свойства открытых им лучей Рентген сформулировал в трех работах, относящихся к 1895, 1896 и 1897 гг. Он же разработал и технику получения этих новых лучей.

Академик А. Ф. Иоффе, работавший с Рентгеном в течение многих лет, пишет: "с тех пор, как открыты рентгеновы лучи, прошло 50 лет. Но из того, что Рентген опубликовал в первых трех сообщениях, не может быть изменено ни одно слово. Многие тысячи исследований не могли прибавить ни йоты к тому, что сделал сам Рентген в самых элементарных условиях с помощью самых элементарных приборов".

Первое сообщение Рентгена появилось в научной печати в начале января 1896 г. В короткое время оно было переведено на многие иностранные языки, в том числе и на русский. Уже 5 января 1896 г. сведения об открытии Рентгена проникли в общую печать. Весь мир был ошеломлен и взволнован известием об этом открытии. Сообщениями об "Х-лучах" были полны как научные журналы, так и общие журналы и газеты.

В России открытие Рентгена было воспринято с энтузиазмом не только специалистами-учеными, но и всей общественностью. А.М.Горький в 1896 г. писал, что рентгеновы лучи это "величайшее создание человеческого гения".

Рентген отлично понимал, какие материальные выгоды сулило ему его открытие. Однако он отказался от извлечения из него каких-либо материальных выгод для себя и отклонил ряд весьма выгодных предложении американских и германских фирм, ответив им, что его открытие принадлежит всему человечеству.

Не будет преувеличением сказать, что рентгенология в медицине за сравнительно короткий период своего развития сделала столько, сколько не сделала ни одна другая отрасль нашего знания. То, что раньше было доступно лишь одиночкам, блестящим мастерам и знатокам своего дела, благодаря рентгеновым лучам стало доступно рядовым врачам. Во многих разделах медицинского знания наши представления были в корне изменены под влиянием того нового, что дало рентгенологическое исследование, и не только в области распознавания болезней, но и в области их лечения. В минувшую войну рентгенология в немалой степени способствовала быстрейшему восстановлению здоровья раненых бойцов и командиров нашей армии и флота, а также разработке и внедрению в практику таких операций, которые были бы немыслимы без нее.

Биологическое действие рентгеновых лучей не было известно Рентгену. К сожалению, оно стало известно позднее ценой многих жизней врачей, инженеров и рентгенолаборантов, которые, не предполагая повреждающего действия рентгеновых лучей, не могли принимать своевременно предохранительных мер. На почве хронического и длительного раздражения рентгеновыми лучами развивались рентгеновские ожоги кожи и хронические воспаления в ней, переходившие позднее в рак, а также тяжелое малокровие.

Так у нас в стране погибли от профессионального рентгеновского рака врачи С. В. Гольдберг, С. П. Григорьев, Н.Н. Исаченко, Я.М. Розенблат, рентгенолаборант И. И. Ланцевич и др., за рубежом - Альберс-Шенбер г, Леви-Дорн (Германия), Гольцкнехт (Австрия), Бергонье (Франция) и многие другие пионеры рентгенологии.

Сам Рентген счастливо избежал этого потому, что при экспериментах с открытыми им лучами он, для предотвращения почернения фотографических пластинок, помещался в специальном шкафу, обитом цинком, одна сторона которого, обращенная к находившейся вне ящика трубке, была к тому же еще обита свинцом.

Открытие рентгеновых лучей означало также новую эпоху в развитии физики и всего естествознания. Оно оказало глубокое влияние и на последующее развитие техники. По выражению А. В. Луначарского, "открытие Рентгена дало изумительной тонкости ключ, позволяющий проникнуть в тайны природы и строение материи".

Средства индивидуальной и коллективной защиты в рентгенодиагностике.

В настоящее время для защиты от рентгеновского излучения при использовании его в целях медицинской диагностики сформировался комплекс защитных средств, которые можно разделить на следующие группы:

  • средства защиты от прямого неиспользуемого излучения;
  • средства индивидуальной защиты персонала;
  • средства индивидуальной защиты пациента;
  • средства коллективной защиты, которые, в свою очередь, делятся на стационарные и передвижные.

Наличие большинства из этих средств в рентгенодиагностическом кабинете и основные их защитные свойства нормируются "Санитарными правилами и нормами СанПиН 2.6.1.1192-03", введенными в действие 18 февраля 2003 г., а также ОСПОРБ-99 и НРБ-99. Данные правила распространяются на проектирование, строительство, реконструкцию и эксплуатацию рентгеновских кабинетов независимо от их ведомственной принадлежности и формы собственности, а также на разработку и производство рентгеновского медицинского оборудования и защитных средств.

В РФ разработкой и производством средств радиационной защиты для рентгенодиагностики занято около десятка фирм, преимущественно новых, которые были созданы в период перестройки, что связано, прежде всего, с достаточно простой технологической оснасткой и стабильными потребностями рынка. Традиционные производства защитных материалов, являющихся сырьем для производства рентгенозащитных средств, сконцентрированы на специализированных химических предприятиях. Так, например, Ярославский завод резинотехнических изделий практически является монополистом по производству рентгенозащитной резины целого спектра свинцовых эквивалентов, применяемой в производстве защитных изделий стационарной (отделка стен небольших рентгенокабинетов) и индивидуальной защиты (рентгенозащитная одежда). Листовой свинец, применяемый для изготовления средств коллективной защиты (защита стен, пола, потолка рентгенокабинетов, а также жесткие защитные ширмы и экраны), производится согласно ГОСТам на специализированных заводах по переработке цветных металлов. Концентрат баритовый КБ-3, применяемый при стационарной защите (защитная штукатурка рентгенокабинетов), производится в основном на Салаирском горно-обогатительном комбинате. Производством рентгенозащитного стекла ТФ-5 (защитные смотровые окна), практически монопольно владеет Лыткаринский завод оптического стекла. Изначально все работы по созданию рентгенозащитных средств в нашей стране велись во Всероссийском научно-исследовательском институте медицинской техники. Следует отметить, что практически все современные отечественные производители рентгенозащитных средств и по сей день используют эти разработки. Так, например, в конце восьмидесятых годов ВНИИМТ впервые разработал полную номенклатуру бессвинцовых защитных средств для пациентов и персонала на основе смесей концентратов оксидов редкоземельных элементов, которые в 5 качестве отходов скопились в достаточных количествах на предприятиях Минатома СССР. Эти модели явились основой для разработок) многочисленных новых производителей, таких как "Рентген-Комплект", "Гаммамед", "Фомос", "Гелпик", "Защита Чернобыля".

Основные требования к передвижным средствам радиационной защиты сформулированы в санитарных правилах и нормах СанПиН 2003.

Защита от используемого прямого излучения предусматривается в конструкции самого рентгеновского аппарата и отдельно, как правило, не выпускается (исключение могут составлять фартуки для экранно-снимочных устройств, приходящие в негодность при эксплуатации и подлежащие замене). Стационарная защита кабинетов выполняется на этапе строительно-отделочных работ и не является изделием медицинской техники. Однако в СанПиН предусмотрены нормативы по составу площади применяемых помещений (табл. 1,2) .

Таблица 1 . Площадь процедурной с разными рентгеновскими аппаратами

Рентгеновский аппарат

Площадь, кв. м (не менее)

Предусматривается
использование
каталки

Не предусматривается
использование
каталки

Рентгенодиагностический комплекс (РДК) с полным набором штативов (ПСШ, стол снимков, стойка снимков, штатив снимков)

РДК с ПСШ, стойкой снимков, штативом снимков

РДК с ПСШ и универсальной стойкой-штативом, рентгенодиагностический аппарат с цифровой обработкой изображения

РДК с ПСШ, имеющим дистанционное управление

Аппарат для рентгенодиагностики методом рентгенографии (стол снимков, стойка для снимков, штатив снимков)

Аппарат для рентгенодиагностики с универсальной стойкой-штативом

Аппарат для близкодистанционной рентгенотерапии

Аппарат для дальнедистанционной рентгенотерапии

Аппарат для маммографии

Аппарат для остеоденситометрии

Таблица 2. Состав и площади помещений для рентгеностоматологических исследований

Наименование помещений

Площадь кв. м (не менее)

1. Кабинет рентгенодиагностики заболеваний зубов методом рентгенографии с дентальным аппаратом, работающим с обычной пленкой без усиливающего экрана:

Процедурная

Фотолаборатория

2. Кабинет рентгенодиагностики заболеваний зубов методом рентгенографии с дентальным аппаратом, работающим с высокочувствительным пленочным и/или цифровым приемником изображения, в том числе с визиографом (без фотолаборатории):

Процедурная

3. Кабинет рентгенодиагностики методом панорамной рентгенографии или панорамной томографии:

Процедурная

Комната управления

Фотолаборатория

На этапе чистовой отделки рентгенокабинета, исходя из СанПиН, рассчитывается уровень дополнительной защиты стен, потолка и пола процедурной. И производится дополнительная штукатурка расчетной толщины радиационно-защитным баритобетоном. Дверные проемы защищаются с помощью специальных рентгенозащитных дверей требуемого свинцового эквивалента. Смотровое окно между процедурной и пультовой изготавливается из рентгенозащитного стекла марки ТФ-5, в ряде случаев применяются рентгенозащитные ставни, защищающие оконные проемы.

Таким образом, самостоятельными изделиями для защиты от рентгеновского излучения (главным образом, рассеиваемого пациентом и элементами оснащения кабинета) являются носимые и передвижные средства защиты пациентов и персонала, обеспечивающие безопасность при проведении рентгенологических исследований. В таблице приведена номенклатура передвижных и индивидуальных средств защиты и регламентируется их защитная эффективность в диапазоне анодного напряжения 70-150 кВ.

Рентгеновские кабинеты различного назначения должны быть оснащены средствами защиты в соответствии с проводимыми видами рентгеновских процедур (табл. 3) .

Таблица 3. Номенклатура обязательных средств радиационной защиты

Средства радиационной защиты

Назначение рентгеновского кабинета защиты

флюорография

рентгеноскопия

рентгенография

урография

маммография денситометрия

ангинография

Большая защитная ширма (при отсутствии комнаты управления или др. средств)

Малая защитная ширма

Фартук защитный односторонний

Фартук защитный двусторонний

Воротник защитный

Жилет защитный с юбкой защитной

Передник для защиты гонад или юбка защитная

Шапочка защитная

Очки защитные

Перчатки защитные

Набор защитных пластин

В зависимости от принятой медицинской технологии допускается корректировка номенклатуры. При рентгенологическом исследовании детей используют защитные средства меньших размеров и расширенный их ассортимент.

К передвижным средствам радиационной защиты относятся:

  • большая защитная ширма персонала (одно-, двух-, трехстворчатая) - предназначена для защиты от излучения всего тела человека;
  • малая защитная ширма персонала - предназначена для защиты нижней части тела человека;
  • малая защитная ширма пациента - предназначена для защиты нижней части тела пациента;
  • экран защитный поворотный - предназначен для защиты отдельных частей тела человека в положении стоя, сидя или лежа;
  • защитная штора - предназначена для защиты всего тела, может применяться взамен большой защитной ширмы.

К индивидуальным средствам радиационной защиты относятся:

  • шапочка защитная - предназначена для защиты области головы;
  • очки защитные - предназначены для защиты глаз;
  • воротник защитный - предназначен для защиты щитовидной железы и области шеи, должен применяться также совместно с фартуками и жилетами, имеющими вырез в области шеи;
  • накидка защитная, пелерина - предназначена для защиты плечевого пояса и верхней части грудной клетки;
  • фартук защитный односторонний тяжелый и легкий - предназначен для защиты тела спереди от горла до голеней (на 10 см ниже колен);
  • фартук защитный двусторонний - предназначен для защиты тела спереди от горла до голеней (на 10 см ниже колен), включая плечи и ключицы, а сзади от лопаток, включая кости таза, ягодицы, и сбоку до бедер (не менее чем на 10 см ниже пояса);
  • фартук защитный стоматологический - предназначен для защиты передней части тела, включая гонады, кости таза и щитовидную железу, при дентальных исследованиях или исследовании черепа;
  • жилет защитный - предназначен для защиты спереди и сзади органов грудной клетки от плеч до поясницы;
  • передник для защиты гонад и костей таза - предназначен для защиты половых органов со стороны пучка излучения;
  • юбка защитная (тяжелая и легкая) - предназначена для защиты со всех сторон области гонад и костей таза, должна иметь длину не менее 35 см (для взрослых);
  • перчатки защитные - предназначены для защиты кистей рук и запястий, нижней половины предплечья;
  • защитные пластины (в виде наборов различной формы) - предназначены для защиты отдельных участков тела;
  • средства защиты мужских и женских гонад предназначены для защиты половой сферы пациентов.

Для исследования детей предусматриваются наборы защитной одежды для различных возрастных групп.

Эффективность передвижных и индивидуальных средств радиационной защиты персонала и пациентов, выраженная в значении свинцового эквивалента, не должна быть меньше значений, указанных в табл. 4,5.

Таблица 4. Защитная эффективность передвижных средств радиационной защиты

Таблица 5. Защитная эффективность индивидуальных средств радиационной защиты

Наименование

Минимальное значение свинцового эквивалента, mm Pb

Фартук защитный односторонний тяжелый

Фартук защитный односторонний легкий

Фартук защитный двусторонний
- передняя поверхность
- вся остальная поверхность

0,35
0,25

Фартук защитный стоматологический

Накидка защитная (пелерина)

Воротник защитный
- тяжелый
- легкий

0,35
0,25

Жилет защитный
передняя поверхность
- тяжелый
- легкий
остальная поверхность
- тяжелый
- легкий

0,35
0,25

0,25
0,15

Юбка защитная
- тяжелая
- легкая

0,5
0,35

Передник для защиты гонад
- тяжелый
- легкий

0,5
0,35

Шапочка защитная (вся поверхность)

Очки защитные

Перчатки защитные
- тяжелые
- легкие

0,25
0,15

Защитные пластины (в виде наборов различной формы)

Подгузник, пеленка, пеленка с отверстием

Дозовые нагрузки на население и персонал при проведении медицинских рентгенологических исследований и основные пути их оптимизации

Облучение в медицинских целях по данным НКАДАР ООН занимает второе (после естественного радиационного фона) место по вкладу в облучение населения на Земном шаре. В последние годы радиационные нагрузки от медицинского использования излучения обнаруживают тенденцию к возрастанию, что отражает все большую распространенность и доступность рентгено-радиологических методов диагностики во всем мире. При этом медицинское использование ИИИ вносит самый большой вклад в антропогенное облучение. Усредненные данные облучения, обусловленные медицинским использованием излучений в развитых странах, приблизительно, эквивалентны 50% глобального среднего уровня облучения от естественных источников. Это связано, в основном, с широким применением в этих странах компьютерном томографии.

Диагностическое облучение характеризуется довольно низкими дозами, получаемыми каждым из пациентов (типичные эффективные дозы находятся в диапазоне 1 - 10 мЗв), что в принципе вполне достаточно для получения требуемой клинической информации. Терапевтическое облучение, напротив, сопряжено с гораздо большими дозами, точно подводимыми к объему опухоли (типичные назначаемые дозы в диапазоне 20-60 Гр).

В годовой коллективной дозе облучения населения Российской Федерации на долю медицинского облучения приходится около 30%.

Принятие Федеральных Законов Российской Федерации: "О радиационной безопасности населения" и "Санитарно-эпидемиологическом благополучии населения" принципиально изменило правовые основы организации Госсанэпиднадзора за использованием медицинских источников ионизирующего излучения (ИИИ) и потребовало полного пересмотра санитарных правил и норм, регламентирующих ограничение облучения населения и пациентов от этих источников. Кроме того, возникла необходимость в разработке на Федеральном уровне новых организационных и методических подходов к определению и учету дозовых нагрузок, получаемых населением от медицинских процедур с использованием ИИИ.

В России вклад медицинского облучения в интегральную дозу облучения населения особенно велик. Если по данным НКДАР ООН средняя доза, получаемая жителем планеты, составляет 2,8 мЗв и доля медицинского облучения в ней 14%, то облучение россиян составляет 3,3 мЗв и 31,2% соответственно.

В Российской Федерации 2/3 медицинского облучения приходится на рентгенодиагностические исследования и почти треть на профилактическую флюорографию, около 4% - на высокоинформативные радионуклидные исследования. Стоматологические исследования добавляют в общую дозу облучения лишь малые доли процента.

Население Российской Федерации по вкладу медицинского облучения по-прежнему является одним из самых облучаемых и, к сожалению, эта ситуация пока не имеет тенденции к снижению. Если в 1999 году популяционная доза медицинского облучения населения России составляла 140 тысяч чел.-Зв, а предшествующие годы еще меньше, то в 2001 году она возросла до 150 тысяч чел.-Зв. При этом численность населения страны сократилась. В России на каждого жителя в год проводится в среднем 1,3 рентгенологических исследования в год. Основной вклад в популяционную дозу вносят рентгеноскопические исследования - 34% и профилактические флюорографические исследования с использованием пленочных флюорографов - 39%.

Одними из главных причин высоких доз медицинского облучения являются: низкие темпы обновления парка устаревших рентгеновских аппаратов на современные; неудовлетворительное сервисное обслуживание медицинской техники; недостаток материальных средств на приобретение средств индивидуальной защиты пациентов, высокочувствительных пленок и современного вспомогательного оборудования; низкая квалификация специалистов.

Выборочная проверка технического состояния парка рентгеновской техники в ряде территорий субъектов Российской Федерации (г. Москва, г. Санкт-Петербург, Брянская, Кировская Тюменская области) показала, что от 20 до 85% действующих аппаратов работают с отклонениями от режимов, указанных в технических условиях. При этом около 15% аппаратов невозможно отрегулировать, дозы облучения пациентов при этом в 2-3, а нередко и более раз выше, чем при их нормальной эксплуатации и они должны быть списаны.

Стратегия снижения дозовых нагрузок на население при проведении рентгенологических процедур должна предусматривать поэтапный переход в рентгенологии на технологии цифровой обработки информации и, прежде всего, при поведении профилактических процедур, доля которых в общем объеме рентгенологических исследований составляет около 33%. Расчеты показывают, что дозовые нагрузки на население при этом снизятся в 1,3 -1,5 раза.

Важным компонентом снижения дозовых нагрузок на население является правильная организация работы фотолабораторного процесса. Основными элементами его являются: подбор типа пленки в зависимости от локализации области обследования и вида рентгенологической процедуры; наличие современных технических средств обработки пленок. Использование при работе в условиях "темной комнаты" оптимального набора современных технологий позволяет за счет резкого снижения дублирования снимков и оптимизации комбинаций "экран-пленка" снизить дозовые нагрузки на пациентов на 15-25%.

Внедрение радиационно-гигиенических паспортов в практику деятельности ЦГСЭН и учреждений здравоохранения при правильных методических подходах к измерению, регистрации, учету и статистической обработке доз уже сегодня позволяет принимать управленческие решения, дающие максимальный эффект снижения индивидуального и коллективного радиационного риска при сохранении высокого качества оказания медицинской помощи населению. На современном этапе детальный анализ динамики дозовых нагрузок является основой в обосновании необходимости пересмотра медицинских технологий, использующих ИИИ, в пользу альтернативных методов исследования с оптимизацией по принципу "польза-вред". Такой подход, на наш взгляд, должен быть положен в основу разработки стандартов лучевой диагностики.

Большая роль в решении вышеуказанной проблемы отводится персоналу отделений лучевой диагностики. Хорошее знание используемой аппаратуры, правильный выбор режимов исследования, точное соблюдение укладок пациентов и методологии его защиты - все это необходимо для качественной диагностики с минимальным облучением, гарантирующим от брака и вынужденных повторных исследований.

Общепризнанно, что именно рентгенология располагает наибольшими резервами оправданного снижения индивидуальных, коллективных и популяционных доз. Эксперты ООН подсчитали, что уменьшение доз медицинского облучения всего на 10%, что вполне реально, по своему эффекту равносильно полной ликвидации всех других искусственных источников радиационного воздействия на население, включая атомную энергетику. Для России этот потенциал значительно выше, в том числе для большинства административных территорий. Доза медицинского облучения населения страны может быть снижена примерно в 2 раза, то есть до уровня 0,5-0,6 мЗв/год, который имеют большинство индустриально развитых стран. В масштабах России это означало бы снижение коллективной дозы на многие десяти тысяч человеко-Зв ежегодно, что равносильно предотвращению каждый год нескольких тысяч смертельных раковых заболеваний, индуцируемых этим облучением.

При проведении рентгенорадиологических процедур облучению подвергается и сам персонал. Многочисленные опубликованные данные показывают, что в настоящее время рентгенолог получает в год дозу профессионального облучения, в среднем, около 1 мЗв в год, что в 20 раз ниже установленного предела дозы и не влечет за собой сколько-нибудь заметного индивидуального риска. Следует отметить, что наибольшему облучению могут подвергаться даже не работники рентгеновских отделений, а врачи так называемых "смежных" профессий: хирурги, анестезиологи, урологи, участвующие в проведении рентгенохирургических операций под рентгеновским контролем.

В настоящее время правовые отношения, связанные с обеспечением безопасности населения при рентгенорадиологических исследованиях изложены более чем в 40 нормативно-правовых и организационно-распорядительных документах. Поскольку уровни облучения пациентов в медицинской практике не нормируются, соблюдение их радиационной безопасности должно обеспечиваться за счет соблюдения следующих основных требований:

* проведение рентгенорадиологических исследований только по строгим медицинским показаниям с учетом возможности проведения альтернативных исследований;

* осуществление мероприятий по соблюдению действующих норм и правил при проведении исследований;

* проведение комплекса мер по радиационной защите пациентов направленных на получение максимальной диагностической информации при минимальных дозах облучения.

При этом должен в полном объеме осуществляться производственный контроль и государственный санитарно-эпидемиологический надзор.

Реализация в полном объеме предложений госсанэпидслужбы России по оптимизации дозовых нагрузок при проведении рентгенодиагностических процедур по итогам ежегодной радиационно-гигиенической паспортизации медицинских учреждений позволит уже в ближайшие 2-3 года снизить эффективную среднюю годовую дозу облучения на одного человека до 0,6 мЗв. При этом суммарная годовая коллективная эффективная доза облучения населения уменьшится почти на 31 000 чел.-Зв, а число вероятных случаев возникновения злокачественных заболеваний (смертельных и не смертельных) снизится за этот период более чем на 2200.

Острые профессиональные лучевые поражения рентгенологов являются в настоящее время почти анахронизмом. Лишь в очень редких случаях при полной неосведомленности персонала о биологическом действии рентгеновых лучей (см. Рентгеновское излучение) и недопустимом несоблюдении обязательных мер предосторожности могут возникнуть у людей, работающих в сфере излучения, общие сравнительно умеренные проявления острой лучевой болезни или чаще так называемые рентгеновские ожоги кожи. Это имеет место главным образом у инженерно-технического персонала при рентгенографии металлических изделий, а среди врачей - у хирургов при вправлении переломов или поисках сложных инородных тел под контролем рентгеновых лучей, а также при так называемых утяжеленных рентгенологических исследованиях, при которых врачи хирурги, урологи, нейрохирурги и пр. становятся жертвой чрезмерного местного или общего облучения, превышающего максимально допустимые уровни действия ионизирующей радиации.

Актуальное значение имеют главным образом хронические профессиональные лучевые поражения рентгенологов.

Наиболее характерен специфический, весьма длительно протекающий дистрофически-дегенеративный процесс кожных покровов - хронический дерматит у врачей рентгенологов, занимающихся рентгенодиагностикой желудочно-кишечных больных, при которой приходится прибегать к пальпации.

Рентгеновский дерматит развивается у рентгенологов с большим профессиональным стажем, однако его возникновение, темпы развития и степень выраженности зависят и от еще неуточненных причин, которые принято обозначать как индивидуальное предрасположение. При пренебрежении требованиями защиты поражается в первую очередь кожа тыльной поверхности кистей рук и особенно пальцев правой (пальпирующей) руки, реже - кожные покровы лица, лба. В ранних стадиях рентгеновского дерматита наблюдаются лишь функциональные нарушения (парестезии, повышенная термическая чувствительность кожи рук). При дактилоскопии рано обнаруживается сглаженность поверхности кожи, рисунок эпидермальных борозд нивелируется. Кожа постепенно теряет свою эластичность и вследствие атрофии сальных и потовых желез становится сухой, грубой. В более выраженных случаях она меняет свою окраску; развивается диспигментоз: светлые беловатые участки атрофии кожи чередуются с пятнами сгущенного бурого или коричневатого пигмента. Возникают и телеангиэктазии. Выпадают пушковые волосы, постепенно эпиляция прогрессирует. Кроме атрофических явлений, наступают и реактивные изменения противоположного знака - гиперпластические процессы (гиперкератозы, папилломатозные и бородавчатые разрастания).

Ногти приобретают тусклый грязновато-серый или бурый цвет, продольно и наискось исчерчены, пластинчаты, искривлены и скрючены, становятся хрупкими, ломкими, крошатся. В ногтевом ложе развиваются заусеницы, кожные валики приподняты и подрыты, и здесь раньше всего образуются болезненные трещины и изъязвления.

Выраженный рентгеновский дерматит очень плохо поддается лечению, и, раз начавшись, обычно в течение ряда лет медленно и неуклонно прогрессирует. Он является наиболее показательным примером предракового процесса: почти неизбежно, даже после прекращения дальнейшего действия рентгеновского излучения, через годы на почве выраженного дерматита возникает истинный профессиональный рак кожи рентгенологов. Гистологически это, как правило, плоскоклеточный рак с явной тенденцией к ороговению. Клинически для этого рака характерны сравнительно с другими раками кожи более молодой возраст, типичная локализация (на коже тыльной поверхности пальцев), первичная множественность, относительно высокая злокачественность. Последняя выражается в значительной болезненности, относительно интенсивном инфильтрирующем росте, метастазировании в ближайшие и отдаленные лимфатические узлы и, главное, неудовлетворительных результатах лечения (лучевое исключается, показано лишь радикальное хирургическое вмешательство) и высокой частоте рецидивов. В мировой литературе зарегистрировано много смертей рентгенологов, главным образом пионеров рентгенологии, от профессионального рака кожи.

Что касается профессиональных изменений системы крови, то в большом проценте случаев у рентгеновского персонала со значительным стажем работы определяется, также с большим индивидуальным акцентом, общая лейкопения - небольшая или умеренная (ниже 5000 и даже 4000 лейкоцитов в 1 мм 3 крови), стойкая или преходящая. При этом характерны абсолютный и относительный (порядка 30-45%) лимфоцитоз и моноцитоз. Для эозинофилов циркулирующей крови показательна лабильность, от анэозинофилии и эозинопении до эозинофилии (чаще), доходящей до 12-14% . Характерна также относительная и абсолютная тромбоцитопения, однако без геморрагических явлений. Важны не только количественные, но и качественные сдвиги - дегенеративные изменения в ядрах и протоплазме кровяных элементов, например патологическая зернистость в протоплазме нейтрофилов. Обычное лабораторное исследование красной крови показывает, как правило, либо нормальную картину, либо весьма незначительную эритроцитопению с некоторым понижением содержания гемоглобина.

В последние годы доказано, что рентгенологи болеют лейкозом чаще, чем все другие (по возрасту, полу и т. д.) контрольные группы населения. Можно лишь спорить об относительной частоте различных форм лейкозов у рентгенологов и радиологов. Принято считать, что заболеваемость лейкозами и смертность у рентгенологов по меньшей мере в 2 раза выше, чем у врачей всех других специальностей, и в 4, 8 и даже 10 раз выше, чем у населения, не подвергающегося хроническому профессиональному облучению. Чаще встречается у рентгеновского персонала и миеломная болезнь (С. А. Рейнберг, 1960).

Достоверных статистических данных об относительном предрасположении персонала рентгеновских кабинетов к опухолям вообще (раку желудка, бронхов и пр.) в настоящее время нет. Из-за больших методических и диагностических трудностей, особенно при ранних фазах и малых формах заболеваний, нет также безупречных материалов и о других профессиональных лучевых поражениях рентгенологов. Все же принято считать, что среди персонала рентгеновских кабинетов чаще, чем в сравнимых контрольных группах населения, имеет место в качестве проявления хронической лучевой болезни так называемый вегето-астенический синдром, что рентгенологи будто бы чаще жалуются на общее снижение тонуса, утомляемость и усталость, недомогание, головные боли, снижение аппетита, плохой сон и т. д. Однако строго обоснованных данных, подтверждающих частоту нарушений, хотя бы функциональных, со стороны сердечно-сосудистой, дыхательной, пищеварительной, выделительной и половой систем профессионального происхождения, нет. Также эндокринные расстройства (менструальные, ранний климакс, тиреотоксикоз и пр.), по-видимому, в прямую связь с профессией ставить нет основания. Отмечают частоту изменений у рентгеновского персонала преломляющих сред глаза (катаракта, помутнение роговицы), а также глаукомы. Наконец, что особенно важно, в настоящее время нет еще возможности из-за непреодоленных методических трудностей с надлежащей научной достоверностью решить вопрос о генетических последствиях хронического профессионального облучения. По обширным анкетным данным, число бездетных браков среди рентгеновского персонала равно средним общим показателям, а сведения о количестве уродств и аномалий в их семьях противоречивы.

Острая дискуссия по вопросу об общем укорочении жизни рентгенологов вскрыла большие погрешности в статистической обработке материалов. Переносить же механически на человека результаты экспериментов на животных и насекомых и считать, что профессия рентгенолога означает какое-то сокращение продолжительности жизни, было бы ошибочным.

Профилактика профессиональных лучевых поражений рентгенологов хорошо разработана. Она включает меры личного, конструктивного и общественно-государственного (законодательного) порядка, сформулированные в виде обязательных постановлений и инструкций. Охрана труда требует хорошей осведомленности персонала о всех возможных отрицательных сторонах дела и строгого соблюдения всех правил безопасности, в первую очередь нормы нагрузок. Превышение предельно допустимых доз ионизирующей радиации запрещено. Работать полагается в одну смену, без совместительства. При просвечиваниях необходимо пользоваться для ограждения от неиспользуемого излучения защитным экраном со свинцовым стеклом, защитными ширмами, фартуками, перчатками. Обязательно систематическое диспансерное наблюдение с обязательными периодическими контрольными исследованиями крови. И если в настоящее время профессиональные лучевые повреждения рентгенологов еще не полностью ликвидированы, то они фактически сведены к вполне приемлемому минимуму.

Данный пост написан с целью развенчать миф о «грязном/вредном/радиоактивном» молоке после выполнения любого рентгенологического обследования кормящей матери.

Пост написан мной (врач-хирург) с помощью и поддержкой моего мужа (инженер-химик, лейтенант запаса войск химической, радиационной и биологической защиты). На научность не претендую, но библиографию представлю. Текст - сплошной копипаст, кроме резюме и нескольких моих комментариев по ходу рассказа. На самом деле практически вся информация, тут представленная - из школьного курса физики.

Начнем с ликбеза.

Рентгеновское излучение — электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10−2 до 103 Å (от 10−12 до 10−7 м).

Биологическое воздействие рентгеновского излучения

Рентгеновское излучение является ионизирующим. Оно воздействует на ткани живых организмов, поражение прямо пропорционально поглощённой дозе излучения. Большая проникающая способность и энергия рентгеновских лучей делают их довольно опасными для организма человека. Во время прохождения через организм человека рентгеновские лучи взаимодействуют с его молекулами и ионизируют их. Говоря проще, рентгеновские лучи способны «разбивать» сложные молекулы и атомы организма человека на заряженные частицы и активные молекулы.

К эффектам, обусловленным действием рентгеновского излучения, а также других ионизирующих излучений (таких, как гамма-излучение, испускаемое радиоактивными материалами) относятся: 1) временные изменения в составе крови после относительно небольшого избыточного облучения; 2) необратимые изменения в составе крови (гемолитическая анемия) после длительного избыточного облучения; 3) рост заболеваемости раком (включая лейкемию); 4) более быстрое старение и ранняя смерть; 5) возникновение катаракт.

Как и в случае других видов ионизирующего излучения, опасным считается только рентгеновское излучение определенной интенсивности, которое воздействует на организм человека в течение достаточно долгого промежутка времени.

Подавляющее большинство медицинских обследований в рамках которых применяется рентгенологическое излучение, используют рентгеновские лучи с низкой энергией и облучают тело человека очень малые промежутки времени в связи с чем, даже при их многократном повторении они считаются практически безвредными для человека.

Дозы рентгеновского излучения, которые используются в обычном рентгене грудной клетки или костей конечностей не могут вызвать никаких немедленных побочных эффектов и лишь очень незначительно (не более чем на 0,001%) повышают риск развития рака в будущем.

В случае рентгеновского излучения, носителем излучения являются электромагнитные волны, которые исчезают сразу после выключения рентгеновского аппарата и не способны накапливаться в организме человека, как это происходит в случае различных радиоактивных химических веществ (например, радиоактивный йод). В связи с тем, что действие рентгеновского излучения на организм человека заканчивается сразу после завершения обследования, а сами по себе лучи не накапливаются в организме человека и не приводят к образованию радиоактивных веществ, никаких процедур или лечебных мероприятий для «вывода радиации из организма» после рентгена проводить не нужно.

В случае, когда пациент был подвержен обследованию с использованием радионуклидов, следует уточнить у врача, какое именно вещество было использовано, каков период его полураспада и каким путем оно выводится из организма. На основе данной информации врач посоветует план мероприятий по выводу радиоактивного вещества из организма.

Сразу после выключения рентгеновского аппарата исчезает как первичное, так и вторичное излучение; отсутствует также и какое-либо остаточное излучение, о чем не всегда знают даже те, кто по своей работе с ним непосредственно связан.

О радиации вообще

Есть 3 вида радиационного излучения

Разные виды излучений сопровождаются высвобождением разного количества энергии и обладают разной проникающей способностью, поэтому они оказывают неодинаковое воздействие на ткани живого организма (рис. 2.2). Альфа-излучение, которое представляет собой поток тяжелых частиц, состоящих из нейтронов и протонов, задерживается, например, листом бумаги и практически не способно проникнуть через наружный слой кожи, образованный отмершими клетками. Поэтому оно не представляет опасности до тех пор, пока радиоактивные вещества, испускающие α-частицы, не попадут внутрь организма через открытую рану, с пищей или с вдыхаемым воздухом; тогда они становятся чрезвычайно опасными. Бета-излучение обладает большей проникающей способностью: оно проходит в ткани организма на глубину один - два сантиметра. Проникающая способность гамма-излучения, которое распространяется со скоростью света, очень велика: его может задержать лишь толстая свинцовая или бетонная плита.

Повреждений, вызванных в живом организме излучением, будет тем больше, чем больше энергии оно передаст тканям; количество такой переданной организму энергии называется дозой.

ДОЗЫ РАДИАЦИОННОГО ОБЛУЧЕНИЯ

Поглощенная доза — энергия ионизирующего излучения, поглощенная облучаемым телом (тканями организма), в пересчете на единицу массы.

Эквивалентная доза — поглощенная доза, умноженная на коэффициент, отражающий способность данного вида излучения повреждать ткани организма.

Эффективная эквивалентная доза — эквивалентная доза, умноженная на коэффициент, учитывающий разную чувствительность различных тканей к облучению.

Последний показатель учитывает, что одни части тела (органы, ткани) более чувствительны к излучению, чем другие: например, при одинаковой эквивалентной дозе облучения возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений.

Эффективную эквивалентную дозу и рассчитывают при проведении любого рентгенологического исследования.

Расчет дозы облучения и оценка риска рентгенологического облучения

Ниже представлено сравнение эффективной дозы радиации, полученной во время наиболее часто используемых диагностических процедур, использующих рентгеновское излучения с природным облучением, которому мы подвергаемся в обычных условиях в течение всей жизни. Необходимо отметить, что указанные в таблице дозы являются ориентировочными и могут варьировать в зависимости от используемых аппаратов и методов проведения обследования.

Процедура

Эффективная доза облучения

Сопоставимо с природным облучением, полученным за указанный промежуток времени

Рентгенография грудной клетки

Флюорография грудной клетки

Компьютерная томография органов брюшной полости и таза

Компьютерная томография всего тела

Внутривенная пиелография

Рентгенография - верхний желудка и тонкого кишечника

Рентгенография толстого кишечника

Рентгенография позвоночника

6 месяцев

Рентгенография костей рук или ног

Менее 1 дня

Компьютерная томография - голова

8 месяцев

Компьютерная томография позвоночника

Миелография

16 месяцев

Компьютерная томография органов грудной клетки

Микционная цистоуретрография

5-10 лет: 1,6 мЗв

Грудной ребенок: 0,8 мЗв

6 месяцев

Компьютерная томография черепа и околоносовых пазух

Денситометрия костей (определение плотности костей)

Менее 1 дня

Галактография

Гистеросальпингография

Маммография

*1 рем = 10 мЗв

[Моё примечание - видела мнение рентгенолога, что данные дозы завышены и на современном оборудовании гораздо ниже показатели облучения. На неделе свяжусь со знакомым рентгенологом, сделаю апдейт, если что нового узнаю.]

Учитывая последние данные о риске радиационного облучения для здоровья человека, количественная оценка риска проводится только в случае получения дозы радиации выше 5 рем (50 мЗв) в течение одного года (для взрослых у детей), либо в случае получения дозы облучения выше 10 рем на протяжении всей жизни, дополнительно к природному облучению.
Существуют точные медицинские данные относительно риска, связанного с высокими дозами облучения. В случае, если общая доза облучения ниже 10 рем (включая природное облучение и облучение на рабочем месте) риск нанесения ущерба здоровью либо слишком низкий для того, чтобы его можно было точно оценить, либо не существует вообще.

В результате эпидемиологических исследований среди людей, подверженных относительно высоким дозам облучения (например, люди, выжившие после взрыва атомной бомбы в Японии в 1945 году) не было выявлено побочных эффектов на состояние здоровья людей, получивших низкие дозы облучения (менее 10 рем) на протяжении многих лет.

Еще дозы для сравнения

  • 0,005 мЗв = 5мкЗв (0,5 мбэр) - ежедневный в течение года трехчасовой просмотр телепередач;
  • 10 мкЗв (0,01 мЗв или 1 мбэр) - перелет самолетом на расстояние 2400 км;
  • 1 мЗв (100 мбэр) - фоновое облучение за год;
  • 5 мЗв (500 мбэр) - допустимое облучение персонала в нормальных условиях;
  • 0, 03 Зв (3 бэр) - облучение при рентгенографии зубов (местное);
  • 0, 05 Зв (5 бэр) - допустимое облучение персонала атомных электростанций в нормальных условиях за год;
  • 0,1 Зв (10 бэр) - допустимое аварийное облучение населения (разовое);
  • 0,25 Зв (25 бэр) - допустимое облучение персонала (разовое);
  • 0,3 Зв (30 бэр) - облучение при рентгеноскопии желудка (местное);
  • 0,75 Зв (75 бэр) - кратковременное незначительное изменение состава крови;
  • 1 Зв (100 бэр) - нижний уровень развития легкой степени лучевой болезни;
  • 4,5 Зв (450 бэр) - тяжелая степень лучевой болезни (погибает 50% облученных);
  • 6 - 7 Зв (600 - 700 бэр) и более - однократно полученная доза считается абсолютно смертельной. (Вместе с тем в медицинской практике имеются случаи выздоровления больных, которые получили радиационное облучение в 6 - 7 Зв (600 - 700 бэр)).

Наиболее вероятные эффекты при различных значениях доз облучения и мощностей дозы, отнесенные к целому телу

  • 10000 мЗв (10 Зв) - При кратковременном облучении причинили бы немедленную болезнь и последующую смерть в течение нескольких недель
  • Между 2000 и 10000 мЗв (2 - 10 Зв) - При кратковременном облучении причинили бы острую лучевую болезнь с вероятным фатальным исходом
  • 1000 мЗв (1 Зв) - При кратковременном облучении, вероятно, причинили бы временное недомогание, но не привели бы к смерти. Поскольку доза облучения накапливается в течение времени, то облучение в 1000 мЗв, вероятно, привело бы к риску появления раковых заболеваний многими годами позже
  • 50 мЗв/в год - Самая низкая мощность дозы, при которой возможно появление раковых заболеваний. Облучение при дозах выше этой приводит к увеличению вероятности заболевания раком
  • 20 мЗв/в год - Усредненный более чем за 5 лет - предел для персонала в ядерной и горнодобывающих отраслях промышленности.
  • 10 мЗв/в год - Максимальный уровень мощности дозы, получаемый шахтерами, добывающими уран
  • 3 - 5 мЗв/в год - Обычная мощность дозы, получаемая шахтерами, добывающими уран
  • 3 мЗв/в год - Нормальный радиационный фон от естественных природных источников ионизирующего излучения, включая мощность дозы почти в 2 мЗв/в год от радона в воздухе. Эти уровни радиации близки к минимальным дозам, получаемым всеми людьми на планете.
  • 0.3 - 0.6 мЗв/в год - Типичный диапазон мощности дозы от искусственных источников излучения, главным образом медицинских
  • 0.05 мЗв/в год - Уровень фоновой радиации, требуемый по нормам безопасности, вблизи ядерных электростанций. Фактическая доза вблизи ядерных объектов намного меньше.

Гигиеническое нормирование ионизирующих излучений

Нормирование осуществляется по санитарным правилам и нормативам СанПин 2.6.1.2523-09 «Нормы радиационной безопасности (НРБ-99/2009)». Устанавливаются дозовые пределы эквивалентной дозы для следующих категорий лиц:

  • персонал — лица, работающие с техногенными источниками излучения (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б);
  • все население, включая лиц из персонала, вне сферы и условий в их производственной деятельности.

Основные пределы доз и допустимые уровни облучения персонала группы Б равны четверти значений для персонала группы А. Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет) 1000 мЗв, а для обычного населения за всю жизнь — 70 мЗв. Планируемое повышенное облучение допускается только для мужчин старше 30 лет при их добровольном письменном согласии после информирования о возможных дозах облучения и риске для здоровья.

Некоторые пункты документа:

7.9. Установленный норматив годового профилактического облучения при проведении профилактических медицинских рентгенологических исследований и научных исследований практически здоровых лиц 1 мЗв. Проведение профилактических обследований методом рентгеноскопии не допускается. Проведение научных исследований с источниками излучения на людях осуществляется по решению федерального органа управления здравоохранения. При этом требуется обязательное письменное согласие испытуемого и предоставление ему информации о возможных последствиях облучения.

7.10. Пределы доз облучения пациентов с диагностическими целями не устанавливаются. Для оптимизации мер защиты пациента необходимо выполнять требования п. 2.2 настоящих Правил.

При достижении накопленной дозы медицинского диагностического облучения пациента 500 мЗв должны быть приняты меры по дальнейшему ограничению его облучения, если лучевые процедуры не диктуются жизненными показаниями. При получении лицами из населения эффективной дозы облучения за год более 200 мЗв, или накопленной дозы более 500 мЗв от одного из основных источников облучения, или 1000 мЗв от всех источников облучения необходимо специальное медицинское обследование, организуемое органами управления здравоохранением.

7.12. При рентгенологическом исследовании обязательно проводится экранирование области таза, щитовидной железы, глаз и других частей тела, особенно у лиц репродуктивного возраста. У детей ранних возрастов должно быть обеспечено экранирование всего тела за пределами исследуемой области.

7.15. При направлении женщин в детородном возрасте на рентгенологическое исследование лечащий врач и рентгенолог уточняют время последней менструации с целью выбора времени проведения рентгенологической процедуры. Рентгенологические исследования желудочно-кишечного тракта, урографию, рентгенографию тазобедренного сустава и другие исследования, связанные с лучевой нагрузкой на гонады, рекомендуется проводить в течение первой декады менструального цикла.

[Моё примечание - в разделе 7 -« Требования по обеспечению радиационной безопасности пациентов и населения» есть упоминание о двух группах пациентов, которым необходимо снизить по возможности уровень облучения - беременные и дети. Про кормящих там нет ни слова, что говорит об отсутствии противопоказаний для рентгенологических исследований.]

Рентгенологические обследования во время кормления грудью

Любые процедуры с использование рентгеновского излучения (обычный рентген, флюорография, компьютерная томография) безопасны для кормящих матерей. Рентгеновские лучи не влияют на состав грудного молока. При необходимости проведения рентгенологического обследований у кормящей матери нет никакой необходимости прерывать грудное вскармливание или сцеживать молоко.

В случае кормящих матерей определенную опасность представляют только рентгенологические обследования, которые предполагают введение в организм радиоактивных веществ (например, радиоактивный йод). Перед такими обследованиями кормящим матерям необходимо сообщить врачам о лактации, так как некоторые лекарственные препараты, используемые в ходе проведения обследования, могут попасть в молоко. Для того чтобы избежать воздействия радиоактивных веществ на организм ребенка, врачи, скорее всего, порекомендуют матери на короткое время прервать кормление, в зависимости от типа и количества используемого радиоактивного вещества (радионуклида).

Библиография

  1. Википедия (статьи «Рентгеновское излучение» и «Ионизирующее излучение») http://ru.wikipedia.org/wiki/Рентгеновское_излучение РАДИАЦИЯ. Дозы, эффекты, риск. Перевод с английского Ю.А. Банникова.(This booklet is largely based on the findings of the United Nations Scientific Committee on the Effects of Atomic Radiation, a subsidiary body of the United Nations General Assembly, and is edited by Geoffrey Lean. The publication does not necessarily reflect the views of the Committee, of the United Nations Environment Programm, or of the editor UNEP 1985United Nations Environment Programme) http://www.russianatom.ru/mediafiles/u/files/MultiMedia/Radiaciya_Dozy_effekty_risk.doc

Резюме

Носителем энергии при воздействии рентгеновским излучением являются электромагнитные волны. Да, они могут вызвать (а могут и не вызвать) определенные разрушения на клеточном и субклеточном уровне. Дозы, получаемые при диагностических исследованиях, крайне малы, чтобы вызвать какие бы то ни было значительные повреждения.

Эти электромагнитные волны действуют только в момент работы рентгеновского аппарата и не накапливаются в организме или где бы то ни было. Чтоб вы знали, некоторые изделия медицинского назначения для однократного применения (полимерные шприцы, системы переливания крови, чашки Петри, пипетки) стерилизуются радиационным методом (гамма-лучами в специальных установках), так они хрупки и не выдерживают стерилизацию высокой температурой.

Соответственно, состав крови и молока не меняется никак от слова совсем . Не надо сцеживаться (ни раз, ни два, ни три, ни пятнадцать). Не надо выжидать время (ни час, ни сутки, ни трое).

НО. Если вы скушаете репку, выросшую вблизи источника радиации (или проходите лечение или обследование с применением радиоизотопов), то вам не только кормить, но и находиться рядом с ребенком нельзя - в организм в этих случаях попадают альфа-частицы, которые чрезвычайно опасны. При лечении или обследовании радиоизотопами пациентов госпитализируют в специальные отделения с экранированными палатами.

Еще одно замечание - рентгеноконтрастные вещества не равно радиоизотопы .[Прозрачные для рентгеновского излучения части тела и полости отдельных органов становятся видимыми, если их заполнить контрастным веществом, безвредным для организма, но позволяющим визуализировать форму внутренних органов и проверить их функционирование. Контрастные вещества пациент либо принимает внутрь (как, например, бариевые соли при исследовании желудочно-кишечного тракта), либо они вводятся внутривенно (как, например, иодсодержащие растворы при исследовании почек и мочевыводящих путей)] . Просмотрела несколько контрастных препаратов на е-лактации - у всех просмотренных риск 0 (посмотреть можно по группам Iodide Radiopaque Agent и MRI Radiopaque Agent). То есть ирригографию кормящим делать можно (если есть показания), контрастную ангиографию - можно, пить сульфат бария для контрастрования желудка - можно, и т.д.

| |

Коми филиал Кировской государственной медицинской академии

Дисциплина Гигиена

Рентгеновское излучение в медицине и меры защиты
персонала и пациентов

Исполнитель: Репин К. В. 304 гр.

Преподаватель: Зеленов В. А.

Сыктывкар, 2007


Содержание

История открытия рентгеновских лучей. 3

Средства индивидуальной и коллективной защиты в рентгенодиагностике. 6

Дозовые нагрузки на население и персонал при проведении медицинских рентгенологических исследований и основные пути их оптимизации.. 11


История открытия рентгеновских лучей.

На пороге XX столетия были сделаны два важных открытия, заново перестроивших наши знания во многих отраслях науки и техники - это открытие лучей Рентгена 8 ноября 1895 г. и последовавшее за ним в 1896 г. открытие Беккерелем радиоактивности.

О том впечатлении, которое произвело на мировую общественность открытие Рентгена, свидетельствует следующее высказывание московского физика П. Н. Лебедева, который в мае 1896 г. писал: "Еще никогда ни одно открытие в области физики не встречало такого всеобщего интереса и не было так обстоятельно обсуждаемо в периодической печати, как открытие Рентгеном нового, до той поры неизвестного рода лучей”.

Вильгельм-Конрад Рентген родился 27 марта 1845 г. в Лениепе, маленьком городке в Германии. Будучи уже в одном из старших классов гимназии, он был исключен из нее за то, что отказался выдать товарища, нарисовавшего на доске карикатуру на нелюбимого педагога. Не имея аттестата зрелости, Рентген не мог попасть в университет и поступил сначала в машиностроительное училище, а затем в Цюрихский политехнический институт.

Получив в 1868 г. диплом инженера машиностроения, Рентген принимает предложение физика Кундта и становится его ассистентом, посвятив всю свою жизнь научно-педагогической деятельности. В 1869 г. он получает ученую степень доктора наук, а в 1875г., в возрасте тридцати лет, избирается профессором физики и математики в Сельскохозяйственную академию в Хохенхейме. В 1888г. по приглашению старейшего университета Германии в Вюрцбурге Рентген занимает должность ординарного профессора физики и заведующего физическим институтом.

В течение более чем пятидесятилетней научной деятельности Рентген напечатал около 50 работ, посвященных различным разделам физики. Будучи уже ученым с мировым именем, он не оставляет педагогической деятельности и продолжает читать лекции по экспериментальной физике. Только в возрасте 70 лет Рентген оставляет кафедру, продолжая научную деятельность почти до последних дней жизни в должности заведующего Институтом физики и метрологии в Мюнхене.

Характерными чертами Рентгена как человека были его исключительная скромность, сдержанность и замкнутость. Так, в своей лаборатории он до самой смерти запрещал называть открытые им лучи рентгеновыми лучами, а только "Х-лучами" (X-Rays), несмотря на состоявшееся в 1906 г. решение Первого международного съезда по рентгенологии о присвоении им наименования лучей Рентгена.

Требовательный и строго принципиальный в научно-исследовательской работе, он был прямолинеен и принципиален также и в жизни, независимо от того, с кем ему приходилось встречаться. Вместе с тем простота и скромность не покидали его и тогда, когда он стал одним из величайших людей в истории человечества. Исключительным было отношение Рентгена к студенческой молодежи.

Рентген тяжело переживал первую империалистическую войну и отношение всего мира к немцам, признавая неправоту официальных германских кругов. Противники Германии в начале войны вычеркнули и его имя из списка мировых ученых. Сам же Рентген находил себе утешение в том, что его открытие в большой мере способствовало смягчению страданий множества раненых, а многим спасло жизнь, что в еще большей степени выявилось в период второй мировой войны.

Рентген скончался 10 февраля 1923 г., на 78 году жизни. Свыше ста наград и почетных званий во всех странах мира было присуждено ему за его открытие, в том числе от Общества русских врачей в Санкт-Петербурге, Общества врачей в Смоленске, от Новороссийского университета в Одессе. Во многих городах его именем были названы улицы. Советское правительство, признавая великие заслуги Рентгена перед наукой и человечеством, воздвигло ему еще при жизни памятник перед зданием Рентгенологического института в Ленинграде; его именем была названа улица, на которой находится этот институт.

Свое открытие Рентген совершил в процессе исследования особого рода лучей, известных под названием катодных, которые возникают при электрическом разряде в трубках с сильно разреженным газом.

Наблюдая в затемненной комнате свечение флуоресцирующего экрана - картона, покрытого платиносинеродистым барием, - вызываемое потоком катодных лучей, выходящих из трубки через окошечко, Рентген вдруг заметил, что при прохождении тока через трубку расположенные поодаль на столе кристаллы платиносинеродистого бария также светятся. Естественно, он предположил, что свечение кристаллов вызывается видимым светом, который испускала трубка. Чтобы проверить это, Рентген обернул трубку черной бумагой; однако свечение кристаллов продолжалось. Чтобы решить другой вопрос - катодные ли лучи вызывают свечение экрана или другие, еще дотоле неизвестные лучи, Рентген отодвинул экран на значительное расстояние; свечение не прекращалось. Так как было известно, что катодные лучи могут проходить в воздухе лишь несколько миллиметров, а в своих опытах Рентген далеко превзошел пределы этой толщины слоя воздуха, то он заключил, что либо полученные им катодные лучи обладают такой проникающей способностью, какую до него никто еще не получал, либо это должны были быть какие-то другие, еще неизвестные лучи.

В процессе исследования Рентген поставил по ходу лучей книгу; свечение экрана стало несколько менее ярким, но все же продолжалось. Пропуская таким же образом лучи сквозь дерево и различные металлы, он заметил, что интенсивность свечения экрана была то более сильная, то ослабевала. Когда же на пути прохождения лучей были поставлены платиновая и свинцовая пластинки, то свечение экрана не наблюдалось совсем. Тогда у него мелькнула мысль поставить на пути лучей свою кисть, и на экране он увидел четкое изображение костей на фоне менее четкого изображения мягких тканей. Чтобы зафиксировать все то, что он видел, Рентген заменил флуоресцирующий картон фотографической пластинкой и получил на ней теневое изображение тех предметов, которые ставились между трубкой и фотопластинкой; в частности, после 20-минутного облучения своей кисти он получил также и ее изображение на фотографической пластинке.

Рентген понял, что перед ним новое, дотоле неизвестное явление природы; оставив все другие занятия, он после двух месяцев работы сумел дать ему столь исчерпывающее объяснение, подтвержденное рядом собранных им фактов, что в течение последующих 17 лет в тысячах работ, посвященных его открытию, не было сказано ничего принципиально нового. Почти все свойства открытых им лучей Рентген сформулировал в трех работах, относящихся к 1895, 1896 и 1897 гг. Он же разработал и технику получения этих новых лучей.

Академик А. Ф. Иоффе, работавший с Рентгеном в течение многих лет, пишет: "с тех пор, как открыты рентгеновы лучи, прошло 50 лет. Но из того, что Рентген опубликовал в первых трех сообщениях, не может быть изменено ни одно слово. Многие тысячи исследований не могли прибавить ни йоты к тому, что сделал сам Рентген в самых элементарных условиях с помощью самых элементарных приборов".

Первое сообщение Рентгена появилось в научной печати в начале января 1896 г. В короткое время оно было переведено на многие иностранные языки, в том числе и на русский. Уже 5 января 1896 г. сведения об открытии Рентгена проникли в общую печать. Весь мир был ошеломлен и взволнован известием об этом открытии. Сообщениями об "Х-лучах" были полны как научные журналы, так и общие журналы и газеты.

В России открытие Рентгена было воспринято с энтузиазмом не только специалистами-учеными, но и всей общественностью. А.М.Горький в 1896 г. писал, что рентгеновы лучи это "величайшее создание человеческого гения".

Рентген отлично понимал, какие материальные выгоды сулило ему его открытие. Однако он отказался от извлечения из него каких-либо материальных выгод для себя и отклонил ряд весьма выгодных предложении американских и германских фирм, ответив им, что его открытие принадлежит всему человечеству.

Не будет преувеличением сказать, что рентгенология в медицине за сравнительно короткий период своего развития сделала столько, сколько не сделала ни одна другая отрасль нашего знания. То, что раньше было доступно лишь одиночкам, блестящим мастерам и знатокам своего дела, благодаря рентгеновым лучам стало доступно рядовым врачам. Во многих разделах медицинского знания наши представления были в корне изменены под влиянием того нового, что дало рентгенологическое исследование, и не только в области распознавания болезней, но и в области их лечения. В минувшую войну рентгенология в немалой степени способствовала быстрейшему восстановлению здоровья раненых бойцов и командиров нашей армии и флота, а также разработке и внедрению в практику таких операций, которые были бы немыслимы без нее.

Биологическое действие рентгеновых лучей не было известно Рентгену. К сожалению, оно стало известно позднее ценой многих жизней врачей, инженеров и рентгенолаборантов, которые, не предполагая повреждающего действия рентгеновых лучей, не могли принимать своевременно предохранительных мер. На почве хронического и длительного раздражения рентгеновыми лучами развивались рентгеновские ожоги кожи и хронические воспаления в ней, переходившие позднее в рак, а также тяжелое малокровие.

Так у нас в стране погибли от профессионального рентгеновского рака врачи С. В. Гольдберг, С. П. Григорьев, Н.Н. Исаченко, Я.М. Розенблат, рентгенолаборант И. И. Ланцевич и др., за рубежом - Альберс-Шенбер г, Леви-Дорн (Германия), Гольцкнехт (Австрия), Бергонье (Франция) и многие другие пионеры рентгенологии.

Сам Рентген счастливо избежал этого потому, что при экспериментах с открытыми им лучами он, для предотвращения почернения фотографических пластинок, помещался в специальном шкафу, обитом цинком, одна сторона которого, обращенная к находившейся вне ящика трубке, была к тому же еще обита свинцом.

Открытие рентгеновых лучей означало также новую эпоху в развитии физики и всего естествознания. Оно оказало глубокое влияние и на последующее развитие техники. По выражению А. В. Луначарского, "открытие Рентгена дало изумительной тонкости ключ, позволяющий проникнуть в тайны природы и строение материи".


Средства индивидуальной и коллективной защиты в рентгенодиагностике.

В настоящее время для защиты от рентгеновского излучения при использовании его в целях медицинской диагностики сформировался комплекс защитных средств, которые можно разделить на следующие группы:

· средства защиты от прямого неиспользуемого излучения;

· средства индивидуальной защиты персонала;

· средства индивидуальной защиты пациента;

· средства коллективной защиты, которые, в свою очередь, делятся на стационарные и передвижные.

Наличие большинства из этих средств в рентгенодиагностическом кабинете и основные их защитные свойства нормируются "Санитарными правилами и нормами СанПиН 2.6.1.1192-03", введенными в действие 18 февраля 2003 г., а также ОСПОРБ-99 и НРБ-99. Данные правила распространяются на проектирование, строительство, реконструкцию и эксплуатацию рентгеновских кабинетов независимо от их ведомственной принадлежности и формы собственности, а также на разработку и производство рентгеновского медицинского оборудования и защитных средств.

В РФ разработкой и производством средств радиационной защиты для рентгенодиагностики занято около десятка фирм, преимущественно новых, которые были созданы в период перестройки, что связано, прежде всего, с достаточно простой технологической оснасткой и стабильными потребностями рынка. Традиционные производства защитных материалов, являющихся сырьем для производства рентгенозащитных средств, сконцентрированы на специализированных химических предприятиях. Так, например, Ярославский завод резинотехнических изделий практически является монополистом по производству рентгенозащитной резины целого спектра свинцовых эквивалентов, применяемой в производстве защитных изделий стационарной (отделка стен небольших рентгенокабинетов) и индивидуальной защиты (рентгенозащитная одежда). Листовой свинец, применяемый для изготовления средств коллективной защиты (защита стен, пола, потолка рентгенокабинетов, а также жесткие защитные ширмы и экраны), производится согласно ГОСТам на специализированных заводах по переработке цветных металлов. Концентрат баритовый КБ-3, применяемый при стационарной защите (защитная штукатурка рентгенокабинетов), производится в основном на Салаирском горно-обогатительном комбинате. Производством рентгенозащитного стекла ТФ-5 (защитные смотровые окна), практически монопольно владеет Лыткаринский завод оптического стекла. Изначально все работы по созданию рентгенозащитных средств в нашей стране велись во Всероссийском научно-исследовательском институте медицинской техники. Следует отметить, что практически все современные отечественные производители рентгенозащитных средств и по сей день используют эти разработки. Так, например, в конце восьмидесятых годов ВНИИМТ впервые разработал полную номенклатуру бессвинцовых защитных средств для пациентов и персонала на основе смесей концентратов оксидов редкоземельных элементов, которые в 5 качестве отходов скопились в достаточных количествах на предприятиях Минатома СССР. Эти модели явились основой для разработок) многочисленных новых производителей, таких как "Рентген-Комплект", "Гаммамед", "Фомос", "Гелпик", "Защита Чернобыля".

Основные требования к передвижным средствам радиационной защиты сформулированы в санитарных правилах и нормах СанПиН 2003.

Защита от используемого прямого излучения предусматривается в конструкции самого рентгеновского аппарата и отдельно, как правило, не выпускается (исключение могут составлять фартуки для экранно-снимочных устройств, приходящие в негодность при эксплуатации и подлежащие замене). Стационарная защита кабинетов выполняется на этапе строительно-отделочных работ и не является изделием медицинской техники. Однако в СанПиН предусмотрены нормативы по составу площади применяемых помещений (табл. 1,2).

Таблица 1 . Площадь процедурной с разными рентгеновскими аппаратами

Рентгеновский аппарат Площадь, кв. м (не менее)

Предусматривается
использование
каталки

Не предусматривается
использование
каталки

Рентгенодиагностический комплекс (РДК) с полным набором штативов (ПСШ, стол снимков, стойка снимков, штатив снимков) 45 40
РДК с ПСШ, стойкой снимков, штативом снимков 34 26
РДК с ПСШ и универсальной стойкой-штативом, рентгенодиагностический аппарат с цифровой обработкой изображения 34 26
РДК с ПСШ, имеющим дистанционное управление 24 16
Аппарат для рентгенодиагностики методом рентгенографии (стол снимков, стойка для снимков, штатив снимков) 16 16
Аппарат для рентгенодиагностики с универсальной стойкой-штативом 24 14
Аппарат для близкодистанционной рентгенотерапии 24 16
Аппарат для дальнедистанционной рентгенотерапии 24 20
Аппарат для маммографии 6
Аппарат для остеоденситометрии 8
Таблица 2. Состав и площади помещений для рентгеностоматологических исследований
Наименование помещений Площадь кв. м (не менее)
1. Кабинет рентгенодиагностики заболеваний зубов методом рентгенографии с дентальным аппаратом, работающим с обычной пленкой без усиливающего экрана:
- процедурная 8
- фотолаборатория 6
2. Кабинет рентгенодиагностики заболеваний зубов методом рентгенографии с дентальным аппаратом, работающим с высокочувствительным пленочным и/или цифровым приемником изображения, в том числе с визиографом (без фотолаборатории):
- процедурная 6
3. Кабинет рентгенодиагностики методом панорамной рентгенографии или панорамной томографии:
- процедурная 8
- комната управления 6
- фотолаборатория 8

На этапе чистовой отделки рентгенокабинета, исходя из СанПиН, рассчитывается уровень дополнительной защиты стен, потолка и пола процедурной. И производится дополнительная штукатурка расчетной толщины радиационно-защитным баритобетоном. Дверные проемы защищаются с помощью специальных рентгенозащитных дверей требуемого свинцового эквивалента. Смотровое окно между процедурной и пультовой изготавливается из рентгенозащитного стекла марки ТФ-5, в ряде случаев применяются рентгенозащитные ставни, защищающие оконные проемы.

Таким образом, самостоятельными изделиями для защиты от рентгеновского излучения (главным образом, рассеиваемого пациентом и элементами оснащения кабинета) являются носимые и передвижные средства защиты пациентов и персонала, обеспечивающие безопасность при проведении рентгенологических исследований. В таблице приведена номенклатура передвижных и индивидуальных средств защиты и регламентируется их защитная эффективность в диапазоне анодного напряжения 70-150 кВ.

Рентгеновские кабинеты различного назначения должны быть оснащены средствами защиты в соответствии с проводимыми видами рентгеновских процедур (табл. 3).


Таблица 3. Номенклатура обязательных средств радиационной защиты
Средства радиационной защиты Назначение рентгеновского кабинета защиты
флюорография рентгеноскопия рентгенография урография маммография денситометрия ангинография
Большая защитная ширма (при отсутствии комнаты управления или др. средств) 1 1 1 1 1 1
Малая защитная ширма 1 1 1
Фартук защитный односторонний 1 1 1 1 1 1
Фартук защитный двусторонний 1 1
Воротник защитный 1 1 1 1 1 1
Жилет защитный с юбкой защитной 1 1 1
Передник для защиты гонад или юбка защитная 1 1 1 1 1 1
Шапочка защитная 1 1 1
Очки защитные 1 1 1
Перчатки защитные 1 1 1
Набор защитных пластин 1 1 1

В зависимости от принятой медицинской технологии допускается корректировка номенклатуры. При рентгенологическом исследовании детей используют защитные средства меньших размеров и расширенный их ассортимент.

К передвижным средствам радиационной защиты относятся:

· большая защитная ширма персонала (одно-, двух-, трехстворчатая) - предназначена для защиты от излучения всего тела человека;

· малая защитная ширма персонала - предназначена для защиты нижней части тела человека;

· малая защитная ширма пациента - предназначена для защиты нижней части тела пациента;

· экран защитный поворотный - предназначен для защиты отдельных частей тела человека в положении стоя, сидя или лежа;

· защитная штора - предназначена для защиты всего тела, может применяться взамен большой защитной ширмы.

К индивидуальным средствам радиационной защиты относятся:

· шапочка защитная - предназначена для защиты области головы;

· очки защитные - предназначены для защиты глаз;

· воротник защитный - предназначен для защиты щитовидной железы и области шеи, должен применяться также совместно с фартуками и жилетами, имеющими вырез в области шеи;

· накидка защитная, пелерина - предназначена для защиты плечевого пояса и верхней части грудной клетки;

· фартук защитный односторонний тяжелый и легкий - предназначен для защиты тела спереди от горла до голеней (на 10 см ниже колен);

· фартук защитный двусторонний - предназначен для защиты тела спереди от горла до голеней (на 10 см ниже колен), включая плечи и ключицы, а сзади от лопаток, включая кости таза, ягодицы, и сбоку до бедер (не менее чем на 10 см ниже пояса);

· фартук защитный стоматологический - предназначен для защиты передней части тела, включая гонады, кости таза и щитовидную железу, при дентальных исследованиях или исследовании черепа;

· жилет защитный - предназначен для защиты спереди и сзади органов грудной клетки от плеч до поясницы;

· передник для защиты гонад и костей таза - предназначен для защиты половых органов со стороны пучка излучения;

· юбка защитная (тяжелая и легкая) - предназначена для защиты со всех сторон области гонад и костей таза, должна иметь длину не менее 35 см (для взрослых);

· перчатки защитные - предназначены для защиты кистей рук и запястий, нижней половины предплечья;

· защитные пластины (в виде наборов различной формы) - предназначены для защиты отдельных участков тела;

· средства защиты мужских и женских гонад предназначены для защиты половой сферы пациентов.

Для исследования детей предусматриваются наборы защитной одежды для различных возрастных групп.

Эффективность передвижных и индивидуальных средств радиационной защиты персонала и пациентов, выраженная в значении свинцового эквивалента, не должна быть меньше значений, указанных в табл. 4,5.

Таблица 4. Защитная эффективность передвижных средств радиационной защиты Таблица 5. Защитная эффективность индивидуальных средств радиационной защиты

Наименование Минимальное значение свинцового эквивалента, mm Pb
Фартук защитный односторонний тяжелый 0,35
Фартук защитный односторонний легкий 0,25

Фартук защитный двусторонний
- передняя поверхность
- вся остальная поверхность

0,35
0,25

Фартук защитный стоматологический 0,25
Накидка защитная (пелерина) 0,35

Воротник защитный
- тяжелый
- легкий

0,35
0,25

Жилет защитный
передняя поверхность
- тяжелый
- легкий
остальная поверхность
- тяжелый
- легкий

Юбка защитная
- тяжелая
- легкая

0,5
0,35

Передник для защиты гонад
- тяжелый
- легкий

0,5
0,35

Шапочка защитная (вся поверхность) 0,25
Очки защитные 0,25

Перчатки защитные
- тяжелые
- легкие

0,25
0,15

Защитные пластины (в виде наборов различной формы) 1,0 - 0,5
Подгузник, пеленка, пеленка с отверстием 0,35
Дозовые нагрузки на население и персонал при проведении медицинских рентгенологических исследований и основные пути их оптимизации

Облучение в медицинских целях по данным НКАДАР ООН занимает второе (после естественного радиационного фона) место по вкладу в облучение населения на Земном шаре. В последние годы радиационные нагрузки от медицинского использования излучения обнаруживают тенденцию к возрастанию, что отражает все большую распространенность и доступность рентгено-радиологических методов диагностики во всем мире. При этом медицинское использование ИИИ вносит самый большой вклад в антропогенное облучение. Усредненные данные облучения, обусловленные медицинским использованием излучений в развитых странах, приблизительно, эквивалентны 50% глобального среднего уровня облучения от естественных источников. Это связано, в основном, с широким применением в этих странах компьютерном томографии.

Диагностическое облучение характеризуется довольно низкими дозами, получаемыми каждым из пациентов (типичные эффективные дозы находятся в диапазоне 1 - 10 мЗв), что в принципе вполне достаточно для получения требуемой клинической информации. Терапевтическое облучение, напротив, сопряжено с гораздо большими дозами, точно подводимыми к объему опухоли (типичные назначаемые дозы в диапазоне 20-60 Гр).

В годовой коллективной дозе облучения населения Российской Федерации на долю медицинского облучения приходится около 30%.

Принятие Федеральных Законов Российской Федерации: "О радиационной безопасности населения" и "Санитарно-эпидемиологическом благополучии населения" принципиально изменило правовые основы организации Госсанэпиднадзора за использованием медицинских источников ионизирующего излучения (ИИИ) и потребовало полного пересмотра санитарных правил и норм, регламентирующих ограничение облучения населения и пациентов от этих источников. Кроме того, возникла необходимость в разработке на Федеральном уровне новых организационных и методических подходов к определению и учету дозовых нагрузок, получаемых населением от медицинских процедур с использованием ИИИ.

В России вклад медицинского облучения в интегральную дозу облучения населения особенно велик. Если по данным НКДАР ООН средняя доза, получаемая жителем планеты, составляет 2,8 мЗв и доля медицинского облучения в ней 14%, то облучение россиян составляет 3,3 мЗв и 31,2% соответственно.

В Российской Федерации 2/3 медицинского облучения приходится на рентгенодиагностические исследования и почти треть на профилактическую флюорографию, около 4% - на высокоинформативные радионуклидные исследования. Стоматологические исследования добавляют в общую дозу облучения лишь малые доли процента.

Население Российской Федерации по вкладу медицинского облучения по-прежнему является одним из самых облучаемых и, к сожалению, эта ситуация пока не имеет тенденции к снижению. Если в 1999 году популяционная доза медицинского облучения населения России составляла 140 тысяч чел.-Зв, а предшествующие годы еще меньше, то в 2001 году она возросла до 150 тысяч чел.-Зв. При этом численность населения страны сократилась. В России на каждого жителя в год проводится в среднем 1,3 рентгенологических исследования в год. Основной вклад в популяционную дозу вносят рентгеноскопические исследования - 34% и профилактические флюорографические исследования с использованием пленочных флюорографов - 39%.

Одними из главных причин высоких доз медицинского облучения являются: низкие темпы обновления парка устаревших рентгеновских аппаратов на современные; неудовлетворительное сервисное обслуживание медицинской техники; недостаток материальных средств на приобретение средств индивидуальной защиты пациентов, высокочувствительных пленок и современного вспомогательного оборудования; низкая квалификация специалистов.

Выборочная проверка технического состояния парка рентгеновской техники в ряде территорий субъектов Российской Федерации (г. Москва, г. Санкт-Петербург, Брянская, Кировская Тюменская области) показала, что от 20 до 85% действующих аппаратов работают с отклонениями от режимов, указанных в технических условиях. При этом около 15% аппаратов невозможно отрегулировать, дозы облучения пациентов при этом в 2-3, а нередко и более раз выше, чем при их нормальной эксплуатации и они должны быть списаны.

Стратегия снижения дозовых нагрузок на население при проведении рентгенологических процедур должна предусматривать поэтапный переход в рентгенологии на технологии цифровой обработки информации и, прежде всего, при поведении профилактических процедур, доля которых в общем объеме рентгенологических исследований составляет около 33%. Расчеты показывают, что дозовые нагрузки на население при этом снизятся в 1,3 -1,5 раза.

Важным компонентом снижения дозовых нагрузок на население является правильная организация работы фотолабораторного процесса. Основными элементами его являются: подбор типа пленки в зависимости от локализации области обследования и вида рентгенологической процедуры; наличие современных технических средств обработки пленок. Использование при работе в условиях "темной комнаты" оптимального набора современных технологий позволяет за счет резкого снижения дублирования снимков и оптимизации комбинаций "экран-пленка" снизить дозовые нагрузки на пациентов на 15-25%.

Внедрение радиационно-гигиенических паспортов в практику деятельности ЦГСЭН и учреждений здравоохранения при правильных методических подходах к измерению, регистрации, учету и статистической обработке доз уже сегодня позволяет принимать управленческие решения, дающие максимальный эффект снижения индивидуального и коллективного радиационного риска при сохранении высокого качества оказания медицинской помощи населению. На современном этапе детальный анализ динамики дозовых нагрузок является основой в обосновании необходимости пересмотра медицинских технологий, использующих ИИИ, в пользу альтернативных методов исследования с оптимизацией по принципу "польза-вред". Такой подход, на наш взгляд, должен быть положен в основу разработки стандартов лучевой диагностики.

Большая роль в решении вышеуказанной проблемы отводится персоналу отделений лучевой диагностики. Хорошее знание используемой аппаратуры, правильный выбор режимов исследования, точное соблюдение укладок пациентов и методологии его защиты - все это необходимо для качественной диагностики с минимальным облучением, гарантирующим от брака и вынужденных повторных исследований.

Общепризнанно, что именно рентгенология располагает наибольшими резервами оправданного снижения индивидуальных, коллективных и популяционных доз. Эксперты ООН подсчитали, что уменьшение доз медицинского облучения всего на 10%, что вполне реально, по своему эффекту равносильно полной ликвидации всех других искусственных источников радиационного воздействия на население, включая атомную энергетику. Для России этот потенциал значительно выше, в том числе для большинства административных территорий. Доза медицинского облучения населения страны может быть снижена примерно в 2 раза, то есть до уровня 0,5-0,6 мЗв/год, который имеют большинство индустриально развитых стран. В масштабах России это означало бы снижение коллективной дозы на многие десяти тысяч человеко-Зв ежегодно, что равносильно предотвращению каждый год нескольких тысяч смертельных раковых заболеваний, индуцируемых этим облучением.

При проведении рентгенорадиологических процедур облучению подвергается и сам персонал. Многочисленные опубликованные данные показывают, что в настоящее время рентгенолог получает в год дозу профессионального облучения, в среднем, около 1 мЗв в год, что в 20 раз ниже установленного предела дозы и не влечет за собой сколько-нибудь заметного индивидуального риска. Следует отметить, что наибольшему облучению могут подвергаться даже не работники рентгеновских отделений, а врачи так называемых "смежных" профессий: хирурги, анестезиологи, урологи, участвующие в проведении рентгенохирургических операций под рентгеновским контролем.

В настоящее время правовые отношения, связанные с обеспечением безопасности населения при рентгенорадиологических исследованиях изложены более чем в 40 нормативно-правовых и организационно-распорядительных документах. Поскольку уровни облучения пациентов в медицинской практике не нормируются, соблюдение их радиационной безопасности должно обеспечиваться за счет соблюдения следующих основных требований:

* проведение рентгенорадиологических исследований только по строгим медицинским показаниям с учетом возможности проведения альтернативных исследований;

* осуществление мероприятий по соблюдению действующих норм и правил при проведении исследований;

* проведение комплекса мер по радиационной защите пациентов направленных на получение максимальной диагностической информации при минимальных дозах облучения.

При этом должен в полном объеме осуществляться производственный контроль и государственный санитарно-эпидемиологический надзор.

Реализация в полном объеме предложений госсанэпидслужбы России по оптимизации дозовых нагрузок при проведении рентгенодиагностических процедур по итогам ежегодной радиационно-гигиенической паспортизации медицинских учреждений позволит уже в ближайшие 2-3 года снизить эффективную среднюю годовую дозу облучения на одного человека до 0,6 мЗв. При этом суммарная годовая коллективная эффективная доза облучения населения уменьшится почти на 31 000 чел.-Зв, а число вероятных случаев возникновения злокачественных заболеваний (смертельных и не смертельных) снизится за этот период более чем на 2200.

Излучения. Внутреннее облучение более опасно, чем внешнее, так как попавшие внутрь ИИИ подвергают непрерывному облучению ничем не защищённые внутренние органы. Под действием ионизирующего излучения вода, являющаяся составной частью организма человека, расщепляется и образуются ионы с разными зарядами. Полученные свободные радикалы и окислители взаимодействуют с молекулами органического вещества...



как при контроле просвечиванием, так и при изготовлении серийных снимков. К настоящему времени выделились следующие виды контрастных ангиографических исследований: - сосудов мозга (церебральные исследования); - сердечно-сосудистой системы (коронарография, васкулярная ангиография, вентрикулография); - брюшной аорты сосудов почек (аортография); периферических сосудов конечностей. Эти...

Конечно, онкологических больных и их родных интересует вопрос «что такое лучевая терапия?», но все-таки их больше волнует ответ на вопрос «что собой представляют последствия радиотерапии?» Почему все боятся этих последствий и насколько они тяжелые? Ответам на эти вопросы и посвящена наша статья. Но обо всем – по порядку.

Что такое лучевая терапия – это польза или вред для организма?

Лучевая терапия – это эффективный метод борьбы с раком. Сражение с онкологическим заболеванием – серьезнейшее испытание для пациента не только во время лечения, но и после него, так как последствия этой борьбы могут создавать определенные сложности.

С помощью современных линейных ускорителей и компьютеризованного планирования радиоонкологи могут в настоящее время очень точно облучать злокачественные опухоли и в значительной мере сохранять здоровые ткани. Вследствие этого лучевая терапия не только более эффективна, но также и лучше переносима, чем еще десять лет тому назад. Однако полностью избежать осложнений, последствий и побочных эффектов радиотерапиине удается. Тем не менее, остро возникающие жалобы являются в большинстве случае лишь временными и быстро стихают после окончания лучевой терапии.

Облучение при онкологии — последствия и осложнения.

Будут ли встречаться осложнения и в какой мере зависит от различных факторов: примененной дозы облучения, облучаемой области, общего состояния здоровья пациента. К этому надо добавить, что не каждый человек одинаково реагирует на облучение. В принципиальном плане врачи отличают острые побочные эффекты, которые дают себя знать во время лучевой терапии, от поздних реакций облучения. Обо всех последствиях облучения – ранних и отдаленных — врач рассказывает пациенту во время планирования лечения.

Ранние местные и общие последствия лучевой терапии.

Чувство усталости, раздражительность и разбитость являются наиболее частыми общими нежелательными последствиями, от которых пациенты страдают в остром периоде. Местные побочные эффекты возникают только в области облучения. Так, в области облучения могут появляться раздражения кожи, схожие с солнечным ожогом в виде гиперемии, волдырей. Тошнота, диарея и рвота — возможные сопутствующие явления лучевой терапии пищеварительного тракта, воспаления слизистой оболочки полости рта или пищевода из-за облучений области головы и шеи.

Еще совсем недавно пациенты переживали из такого неприятного последствия, как выпадение волос. Понятно их болезненное реагирование на это явление, ведь выпадали волосы не только на голове, но и на всей поверхности тела, в том числеисчезали брови и ресницы. Сейчас такой активной реакции практически не происходит, так как современное оборудование позволяет действовать предельно локально, да и доза излучения маленькая. Но ломкость ногтей отмечаться может. Женщины в это время должны особенно бережно следить за своими руками и не мыть посуду без перчаток, избегать контакта с химическими реагентами при стирке и уборке квартиры.

Какие отдаленные последствия лучевой терапии (облучения) могут встречаться?

Поздние реакции проявляются лишь спустя периоддлительностью от нескольких месяцев до нескольких лет. К таким отдаленным последствиям, например, могут относиться изменения цвета кожи и уплотнения в подкожной жировой клетчатке. Кроме того, облученная кожа при известных условиях более чувствительна, чем до терапии и нуждается в большем уходе. Также раздражения кожи — например, из-за солнечной радиации — могут сильнее давать себя знать. Раны в бывшей области облучения уже не заживают так хорошо, как раньше, и процесс воспаления легче переходит в хронический. Поэтому при медицинских мероприятиях в этой области – например, таких как заборы крови или физиотерапия — необходимо ставить в известность врачей или младший медицинский персонал о ранее проведенном облучении.

Точно так же могут стать очень чувствительными железы и слизистые оболочки, если они затрагивались при облучении. Внутренние органы тоже могут реагировать с изменениями и подвергаться рубцеванию, вследствие чего при известных условиях орган больше не функционирует так хорошо, как до облучения. Поэтому необходимо особенно внимательно взвесить пользу и риски, если при лучевой терапии нельзя избежать совместного облучения какого-либо органа.

Лучевая терапия — это польза или вред для организма?

Может радиотерапия – это все-таки больше вред для организма, чем польза? Эти вопросы задают себе немало пациентов. Последствия и грозные осложнения пугают больных и их родственников. Не может ли лучевая терапия сама также вызвать рак? Исследования показывают, что этот риск по сравнению с пользой от лечения является низким. В случае если пациент из-за этого чувствует себя, тем не менее, неуверенно, он должен разрешить свои сомнения, проконсультировавшись с лечащим врачом.

Как устранить последствия облучения?

Надо выполнять все рекомендации врача. За участками кожи, которые находились в области облучения, необходимо ухаживать особенно тщательно – во время купания не пользоваться мочалками, не растирать кожу. Надо отказаться от дезодорантов, кремов, спиртовых лосьонов. При облучении молочной железы – не носить бюстгальтер и тесно облегающую одежду.

Старайтесь не унывать. Как правило, все последствия проходят через 2-3 месяца после окончания курса лечения. В противном случае, следует обратиться к врачу, который может назначить лекарственную терапию и помочь восстановлению организма.

Проф. д-р мед. наук Даниэль М. Эберзольд — Берн — Радиотерапия | Радиоонкология

Отрасли специализации

  • Стереотаксическая радиотерапия (SRT): внутричерепная радиохирургия (SRS) и экстракраниальная радиотерапия (SBRT)
  • Радиотерапия с синхронизацией дыхательных движений и исследование опухолей с помощью Киберножа
  • Все виды брахитерапии, включая интраоперационную брахитерапию (IORT)
  • Комбинированная терапия, например, радиохимиотерапия и биорадиотерапия в сотрудничестве с Институтом Пауля Шеррера (PSI) и направление пациентов на протонную терапию
  • Ортовольтное облучение
  • Бета-облучение птеригиума глаза

Университетская клиника радиоонкологии « Inselspital » является одним из ведущих медицинских учреждений Швейцарии, предлагающих различные виды лучевой терапии. Клиника уделяет много внимания индивидуальному и профилактическому лечению пациентов. Работа клиники базируется на высоких требованиях к качеству. Клиника радиоонкологии работает в соответствии со строгими директивами по качеству и сертифицирована по стандартам ISO с 2013 г. Кроме того, клиника является частью Университетского онкологического центра клиники «Inselspital» (UCI). В Университетском онкологическом центре потребности пациентов превыше всего. Оптимальное лечение пациентов обеспечивается благодаря сотрудничеству высококвалифицированных специалистов различных отраслей.

Клиника предлагает широкий спектр современных методов лучевой терапии и других специализированных медицинских услуг (стереотаксическая радиохирургия, интерстициальная брахитерапия). В отдельных отраслях, таких как брахитерапия и стереотаксическая радиотерапия, клиника является международно признанным лидером и партнером в отрасли онкологической медицины.

В Центре брахитерапии коллектив специалистов выполняет все виды брахитерапии, в том числе интраоперационную брахитерапию (IORT). При брахитерапии микроскопический источник излучения вводится непосредственно в опухоль, что позволяет максимально сохранить окружающие ткани. Такой современный метод регулярно применяется в клинике при частичном облучении рака молочной железы.

В Центре стереотаксической радиотерапии специалисты занимаются лечением опухолей с помощью самых современных и точных технологий. В клинике доступны две новейших системы лечения: Novalis TX ® на основе линейного ускорителя (LINAC) и специализированное стереотаксическое устройство CyberKnife ® (Кибернож). Обе системы позволяют корректировать положение пациента пространстве в шести направлениях, а синхронизировать облучение подвижных органов с дыхательными движениями. Технология Cyberknife ® позволяет исследовать опухоли в реальном времени для оптимального лечениях различных опухолей легких и печени.

Помимо высококачественного обслуживания клиника занимается различными клиническими исследованиями, техническими разработками, исследованиями в области медицинской физики и радиобиологии. Благодаря программам повышения квалификации все группы специалистов (врачи, медицинские физики, МТРА, специалисты по уходу) постоянно совершенствуют свои навыки и активно способствуют высокому качеству лечения и развития в отрасли радиоонкологии.

Вместе со своими партнерами клиника формирует уникальную клиническую сеть, предлагая полный спектр услуг лучевой терапии большому количеству пациентов.

Спектр диагностических услуг

  • Аппликация контрастного вещества при четырехмерной КТ в клинике
  • Комбинированная молекулярная визуализация, например, ПЭТ-КТ и МРТ
  • Индивидуальный план стереотаксической радиотерапии (iPlan)

Спектр терапевтических услуг

  • Особо точное оборудование для облучения (NovalisTx и TrueBeam), все виды стереотаксического облучения (стереотаксическая хирургия SRS, фракционированная стереотаксическая лучевая терапия FSRT, стереотаксическая лучевая терапия тела SBRT), а также стандартные методы лечения (радиотерапия с модулированием по интенсивности IMRT, ротационная терапия с модуляцией объема излучения VMAT, радиотерапия с визуальным контролем IGRT); лучевая терапия с синхронизацией дыхательных движений
  • Стандартный линейный ускоритель для трехмерной стандартной радиотерапии
  • Планирование облучения на основе молекулярной визуализации (МРТ, ПЭТ-КТ)
  • Брахитерапия с высокой мощностью дозы (все формы эндолюминальной и интерстициальной брахитерапии, включая частичное облучение молочной железы и интраоперационную радиотерапию)
  • Интраоперационная радиотерапия при частично операбельных опухолях
  • Низкодозированная брахитерапия прионкологических заболеваниях предстательной железы
  • Все формы комбинированной радио — и химиотерапии при тесном сотрудничестве с Университетской клиникой медицинской онкологии
  • Брахитерапия при птеригиуме глаза с аппликатором стронция
  • Ортовольтное и поверхностное облучение при опухолях кожи и дегенеративных заболеваниях
  • Лучевая терапия для взрослых и детей

Особые предложения / Услуги / Размещение

Поддержкой иностранных пациентов занимается международный центр « Insel International Center », обеспечивая обслуживание на родном языке пациентов.

Для специалистов по заболеваниям различных органов назначаются специальные междисциплинарные консультации для обсуждения случаев. Университетская клиника радиоонкологии является основным партнером Университетского онкологического центра клиники « Inselspital » в Берне.

Опытный эксперт в области Радиотерапия | Радиоонкология

Информация о Проф. д-р мед. наук Даниэль М. Эберзольд

Коллектив врачей

  • д-р мед. наук Кристина Лёссль
    зам. главного врача
  • приват-доцент, д-р. мед. наук Катрин Цаугг
    ведущий врач
  • Проф. д-р мед. наук Штеффен Эйхмюллер
    Ведущий врач Центра паллиативной помощи
  • Проф. д-р мед. наук Дамиан Чарльз Вебер
    врач-консультант
  • д-р мед. наук Алан Даль Пра
    старший врач
  • д-р мед. наук Франк Беренсмайер
    старший врач
  • д-р мед. наук Петер Мессер
    старший врач
  • д-р мед. наук Патрик Вольфенсбергер
    старший врач
  • д-р мед. наук Эвелин Херрманн
    старший врач
  • д-р мед. наук Кодрута Ионеску
    старший врач
  • д-р мед. наук Доминик Лайзер
    старший врач
  • д-р мед. наук Никола Чихорич
    зам. старшего врача
  • д-р мед. наук Ольгун Эличин
    зам. старшего врача
  • д-р мед. наук Хоссейн Хемматазад
    зам. старшего врача
  • д-р мед. наук Давид Лауффер
    зам. старшего врача
  • д-р мед. наук Соня Штиб
    зам. старшего врача

Дополнительные услуги

  • Международный центр Инзель (IIC): административная и организационная поддержка иностранных пациентов, по запросу – индивидуальное консультирование менеджером по обслуживанию пациентов, вопросы по лечению, услуги переводчика, транспорт, визы, номера в гостинице для сопровождающих родственников, туристические услуги
  • Одноместные и двухместные номера: телевизор и беспроводной Интернет
  • Банк, парикмахерская, киоск, католическая и реформатская капелла, комнаты отдыха, а также широкий выбор ресторанов

Лучевая терапия в онкологии. Последствия лучевой терапии

Лучевая терапия в онкологии – это метод лечения опухолевых заболеваний с помощью ионизирующего облучения. Последствия ее значительно меньше, чем польза, которую она приносит в борьбе с опухолью. Этот вид терапии используется при лечении половины онкобольных.

Радиотерапией (лучевая терапия) называется способ лечения, при котором применяется поток ионизированного излучения. Это могут быть гамма-лучи, бета-лучи или рентгеновское излучение. Такие виды лучей способны активно воздействовать на раковые клетки, приводя к нарушению их структуры, мутации и, в конечном итоге, к гибели. Хотя воздействие ионизированного излучения вредно для здоровых клеток организма, их восприимчивость к излучениям меньше, что позволяет им выживать, несмотря на облучение. В онкологии лучевая терапия негативно влияет на расширение опухолевых процессов и замедляет рост злокачественных опухолей. Онкология после лучевой терапии становится меньшей проблемой, так как во многих случаях наблюдается улучшение состояния больного.

Наряду с хирургическим вмешательством и химиотерапией лучевая терапия дает возможность добиться полного выздоровления пациентов. Хотя лучевая терапия иногда и используется как единственный метод терапии, чаще ее применяют в комбинации с другими методами борьбы с онкологическими заболеваниями. Лучевая терапия в онкологии (отзывы больных в целом позитивные) стала в наши дни отдельным медицинским направлением.

Виды лучевой терапии

Дистанционная терапия – вид лечения, при котором источник излучения располагается вне пределов тела больного, на некотором расстоянии. Предшествовать дистанционной терапии может компьютерная томография, дающая возможность в трехмерном виде спланировать и смоделировать операцию, что позволяет более точно воздействовать лучами на пораженные опухолью ткани.

Брахитерапия – метод лучевой терапии, при котором источник излучения располагается в непосредственной близости от опухоли или в ее тканях. Среди достоинств данной методики можно назвать уменьшение негативного воздействия облучения на здоровые ткани. Помимо этого, при точечном воздействии имеется возможность увеличить дозу излучения.

Чтобы добиться наилучших результатов, при подготовке к проведению лучевой терапии подсчитывается и планируется необходимая доза лучевого воздействия.

Побочные эффекты

Лучевая терапия в онкологии, последствия которой человек долго ощущает на себе, все же способна спасти жизнь.

Реакция каждого человека на лучевую терапию носит индивидуальный характер. Поэтому все побочные эффекты, которые могут возникнуть, очень трудно предсказать. Перечислим наиболее часто встречающиеся симптомы:

  • Ухудшение аппетита. Большая часть пациентов жалуется на плохой аппетит. При этом необходимо принимать пищу в небольших количествах, но часто. Вопрос питания в случае отсутствия аппетита можно обсудить с лечащим врачом. Организму, проходящему лучевую терапию, необходима энергия и полезные вещества.
  • Тошнота. Одна из основных причин снижения аппетита — тошнота. Чаще всего данный симптом можно встретить у больных, которые проходят лучевую терапию в зоне брюшной полости. При этом может появиться и рвота. О ситуации должен быть немедленно проинформирован врач. Возможно, больному потребуется назначение противорвотных средств.
  • Диарея. Диарея часто возникает в результате лечения методом лучевой терапии. В случае возникновения диареи необходимо употреблять как можно больше жидкости для предотвращения обезвоживания организма. Об этом симптоме также следует сообщить лечащему врачу.
  • Слабость. В процессе курса лучевой терапии пациенты значительно уменьшают свою активность, испытывая апатию и находясь в плохом самочувствии. С этой ситуацией сталкиваются практически все больные, которые прошли курс лучевой терапии. Особенно тяжело даются больным визиты в больницу, которые периодически нужно совершать. На этот период времени не следует планировать дела, отнимающие физические и моральные силы, следует оставлять максимальное время на отдых.
  • Проблемы с кожей. Через 1-2 недели после начала лучевой терапии кожа, оказавшаяся в зоне воздействия излучения, начинает краснеть и шелушиться. Иногда больные жалуются на зуд и болевые ощущения. В этом случае следует использовать мази (по рекомендации врача-радиолога), аэрозоль «Пантенол», крема и лосьоны для ухода за детской кожей, отказаться от косметических средств. Растирать раздраженную кожу категорически запрещено. Участок тела, где произошло раздражение кожи, необходимо мыть лишь прохладной водой, временно отказавшись от приема ванн. Необходимо избавить кожу от влияния прямого солнечного света и носить одежду с использованием натуральных тканей. Эти действия помогут снять раздражение кожи и уменьшить боль.

Уменьшение побочных эффектов

После прохождения курса лучевой терапии врач даст рекомендации, как себя вести дома, принимая в расчет особенности вашего случая, чтобы минимизировать побочные эффекты.

Любой, кто знает, что такое лучевая терапия в онкологии, последствия этого лечения тоже хорошо себе представляет. Те больные, которых лечат методом лучевой терапии от опухолевого заболевания, должны придерживаться рекомендаций врача, содействуя успешному лечению и стараясь улучшить свое самочувствие.

  • Больше времени уделять отдыху и сну. Лечение требует большого количества дополнительной энергии, и вы можете быстро утомляться. Состояние общей слабости иногда длится еще 4-6 недель после того, как лечение уже окончено.
  • Хорошо питаться, стараясь предотвратить потерю веса.
  • Не надевать тесную одежду с тугими воротниками или поясами в областях, подвергшихся облучению. Лучше предпочесть старые костюмы, в которых вы ощущаете комфорт.
  • Обязательно информируйте лечащего врача обо всех принимаемых вами лекарствах, чтобы он мог учесть это при лечении.

Проведение лучевой терапии

Главным направлением лучевой терапии является оказание максимального воздействия на опухолевое образование, минимально воздействуя на другие ткани. Чтобы этого добиться, врачу нужно точно определить, где находится опухолевый процесс, чтобы направление и глубина луча позволили достичь поставленных целей. Эта область носит название поля облучения. Когда производится дистанционное облучение, на кожу наносится метка, которая обозначает область лучевого воздействия. Все соседние области и прочие части тела защищаются экранами из свинца. Сеанс, во время которого производится облучение, продолжается несколько минут, а число таких сеансов определяется дозой облучения, которая, в свою очередь, зависит от характера опухоли и вида опухолевых клеток. В процессе сеанса больной не испытывает неприятных ощущений. Во время приема процедуры пациент находится в помещении один. Врач контролирует ход процедуры через специальное окошко или с помощью видеокамеры, находясь в соседнем помещении.

В соответствии с видом новообразования лучевая терапия либо используется как самостоятельный способ лечения, либо является частью комплексной терапии вместе с хирургическим вмешательством или химиотерапией. Лучевая терапия применяется местно с целью облучения отдельных участков тела. Зачастую она содействует заметному сокращению размеров опухоли или приводит к полному излечению.

Продолжительность

Время, на которое рассчитан курс лучевой терапии, определяется спецификой болезни, дозами и применяемым методом облучения. Гамма-терапия зачастую длится 6-8 недель. За это время больной успевает принять 30-40 процедур. Чаще всего лучевая терапия не требует помещения больного в стационар и хорошо переносится. Некоторые показания требуют проведения лучевой терапии в условиях стационара.

Длительность курса лечения и дозы облучения находятся в прямой зависимости от вида болезни и степени запущенности процесса. Срок лечения при внутриполостном облучении длится значительно меньше. Он может состоять из меньшего количества процедур и редко длится больше четырех дней.

Показания к применению

Лучевая терапия в онкологии применяется при лечении опухолей любой этиологии.

  • рак мозга;
  • рак груди;
  • рак шейки матки;
  • рак гортани;
  • рак легкого;
  • рак поджелудочной железы;
  • рак простаты;
  • рак позвоночника;
  • рак кожи;
  • саркома мягких тканей;
  • рак желудка.

Облучение используется в лечении лимфомы и лейкемии.

Иногда лучевая терапия может проводиться в профилактических целях без свидетельств наличия рака. Такая процедура служит для того, чтобы предотвратить развитие рака.

Доза облучения

Дозой облучения называют объем ионизирующего излучения, поглощенный тканями организма. Раньше единицей измерения дозы облучения служил рад. Сейчас для этой цели служит Грей. 1 Грей равняется 100 радам.

Различным тканям свойственно выдерживать разные дозы радиации. Так, печень способна выдержать почти в два раза больше радиации, чем почки. Если общую дозу разбить на части и облучать пораженный орган день за днем, это усилит ущерб раковым клеткам и уменьшит здоровой ткани.

Планирование лечения

Современный врач-онколог знает все о лучевой терапии в онкологии.

В арсенале врача имеется много типов излучения и методов облучения. Поэтому правильно спланированное лечение является залогом выздоровления.

При наружной лучевой терапии, онколог для нахождения области облучения применяет симуляцию. При симуляции пациент располагается на столе, а врач определяет один или несколько портов облучения. В ходе симуляции возможно также выполнение компьютерной томографии или иного метода диагностики, чтобы определиться с направлением излучения.

Зоны облучения помечаются специальными маркерами, указывающими направление излучения.

В соответствии с тем, какой тип лучевой терапии избран, больному предлагаются специальные корсеты, которые помогают зафиксировать различные части тела, устраняя их движение при прохождении процедуры. Иногда применяют особые защитные экраны, помогающие защитить соседние ткани.

В соответствии с результатом симуляции специалисты, занимающиеся лучевой терапией, примут решение о необходимой дозе облучения, способе доставки и количестве сеансов.

Рекомендации по питанию помогут избежать побочных эффектов от курса лечения или уменьшить их выраженность. Особенно важно это для лучевой терапии в области таза и живота. Лучевая терапия и диета при онкологии обладают рядом особенностей.

Надо пить большое количество жидкости, до 12 стаканов в день. Если в жидкости высокое содержание сахара, ее нужно разбавить водой.

Прием пищи дробный, 5-6 раз в день малыми дозами. Пища должна легко усваиваться: следует исключить пищу, содержащую грубые волокна, лактозу и жиры. Такую диету желательно соблюдать еще 2 недели после проведения терапии. Затем можно постепенно вводить продукты с волокнами: рис, бананы, яблочный сок, пюре.

Реабилитация

Применение лучевой терапии сказывается как на опухолевых, так и на здоровых клетках. Особенно вредна она для клеток, которые быстро делятся (слизистые оболочки, кожа, костный мозг). Облучение порождает в организме свободные радикалы, способные нанести вред организму.

Сейчас ведутся работы, чтобы найти способ сделать лучевую терапию более прицельной, чтобы она действовала лишь на клетки опухоли. Появилась установка гамма-нож, служащая для лечения опухолей шеи и головы. В ней обеспечивается весьма точное воздействие на опухоли малых размеров.

Несмотря на это, почти все, кто получал лучевую терапию, в разной степени страдают лучевой болезнью. Боли, отеки, тошнота, рвота, выпадение волос, анемия — такие симптомы в итоге вызывает лучевая терапия в онкологии. Лечение и реабилитация больных после сеансов облучения являются большой проблемой.

Для реабилитации больному нужен отдых, сон, свежий воздух, полноценное питание, использование стимуляторов иммунной системы, средств детоксикации.

Кроме нарушения здоровья, которое порождено тяжелым недугом и жестким его лечением, пациенты испытывают депрессию. В состав мероприятий по реабилитации часто требуется включать занятия с психологом. Все эти мероприятия помогут преодолеть сложности, которые вызвала лучевая терапия в онкологии. Отзывы больных, прошедших курс процедур, говорят о несомненной пользе методики, несмотря на побочные явления.

Неожиданно: мужья хотят, чтобы их жены делали чаще эти 17 вещей Если вы хотите, чтобы ваши отношения стали счастливее, вам стоит почаще делать вещи из этого простого списка.

Топ-10 разорившихся звезд Оказывается, иногда даже самая громкая слава заканчивается провалом, как в случае с этими знаменитостями.

Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60 Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.

Как выглядеть моложе? 9 хитростей, о которых знают дерматологи Хотите иметь идеальную кожу? Существуют многие секреты, которые позволят вам забыть, для чего работают дерматологи и пластические хирурги.

Наши предки спали не так, как мы. Что мы делаем неправильно? В это трудно поверить, но ученые и многие историки склоняются к мнению, что современный человек спит совсем не так, как его древние предки. Изначально.

20 фактов, которых вы не знали о фильме «Красотка» В 1990 году на экраны вышла любимая романтическая комедия, мгновенно ставшая хитом и не потерявшая своего шарма даже спустя четверть века. Фильм «Крас.

Главная / Лучевая терапия / Комбинированное лечение: лучевая терапия и КиберНож(CyberKnife®)

Комбинация классической лучевой терапии и КиберНожа

Добавляя лечение на КиберНоже в комплекс лечения классической лучевой терапией, радиационные онкологи центра «ОнкоСтоп» подбирают самые эффективные режимы лечения на разных клинических этапах, за счет чего обеспечивается индивидуальный подход к проблемам каждого пациента.

Комбинация ДЛТ и КиберНожа позволяет специалистам-радиационным онкологам добиться максимально положительного эффекта: сработать на опережение – остановить или затормозить рост существующей опухоли и предотвратить появление новых очагов в кратчайшие сроки, что заведомо улучшает прогноз при определенных патологиях. Комплексное лечение также позволяет специалистам воздействовать не только на саму опухоль, но и на отдаленные, невидимые и не определяемые различными методами исследования (КТ, МРТ) метастазы.

Медицинский радиотерапевтический комплекс позволяет воздействовать на опухоль и метастазы большими объемами облучения, а добавление КиберНожа — добиваться эффекта точечно.

Процедура лечения

Процедура лечения состоит из 2 этапов: облучения на линейном ускорителе и облучения на радиохирургической установке КиберНож.

Первый этап лечения на линейном ускорителе проходит под контролем визуализации – радиационные онкологи проверяют заранее подготовленный план лечения: осуществляют верификацию укладки пациента и досконально сверяют фактическое положение пациента с созданным ранее дозиметрическим планом облучения. Сама процедура лечения занимает порядка 30-40 минут. После окончания первого этапа лечения проводится МРТ исследование для оценки эффективности лучевой терапии и визуализации оставшихся больших образований в контексте подготовки к локальному воздействию на аппарате КиберНож с минимальной нагрузкой на органы риска и подлежащие структуры.

Комбинация 3-х мерной конформной лучевой терапии с роботизированной радиохирургической установкой КиберНож показана:

  • при раке предстательной железы с метастазами в лимфоузлы;
  • при опухолях головного мозга;
  • при множественных метастазах в головной мозг;
  • при опухолях головы и шеи;
  • при раке легкого (не только ранних стадиях, но и в более поздних случаях).

При раке предстательной железы на первом этапе необходимо облучить саму предстательную железу и региональные лимфатические узлы (область малого таза), и уже на втором этапе пациента можно перевести на КиберНож и локально облучать опухоли только предстательной железы.

При большом количестве метастазов в мозг на первом этапе, согласно мировым стандартам, необходимо проведение облучения всего головного мозга с целью лечения мелких очагов и профилактического воздействия на здоровую нервную ткань головного мозга (для предотвращения возможного появления новых очагов). На втором этапе, чтобы более точечно воздействовать на оставшиеся дополнительные крупные образования, лечение может быть проведено с помощью курса стереотаксической лучевой терапии на КиберНоже.

При раке легких на ранних этапах необходимо обширно облучать небольшие очаговые образования, после чего пациент направляется на КиберНож для более точечного воздействия. Аналогичная схема лечения применяется при множественных метастазах в легкие.

При опухолях головы и шеи чаще применяется классическая лучевая терапия, как после операции, так и перед хирургическим вмешательством. КиберНож в ряде случаев может стать альтернативой операции.

При возникновении локального рецидива повторное облучение классической лучевой терапией противопоказано, поэтому применяется только КиберНож — для повторного воздействия на

Сравнение методик

Несмотря на то, что вид ионизирующего излучения линейного ускорителя и КиберНожа один и тот же (фотонное излучение), кардинальные отличия заключаются в методике подачи излучения и возможностях фокусирования пучка. Основная разница заключается в распределении энергии для достижения необходимого терапевтического эффекта и в разрешающей способности: если роботизированная радиохирургическая установка КиберНож способна с субмиллиметровой точностью (до 1 мм (!) здоровой ткани) гомогенно облучить достаточно мелкое образование, то линейный ускоритель воздействует на более обширный объем – с большим градиентом падения дозы (около 3 мм).