Домой / Другие болезни почек / Физиология сердечно сосудистой системы кровообращение. Физиология сердечно-сосудистой системы человека

Физиология сердечно сосудистой системы кровообращение. Физиология сердечно-сосудистой системы человека

ТЕМА: ФИЗИОЛОГИЯ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ

Занятие 1. Физиология сердца.

Вопросы для самоподготовки.

1. Сердце и его значение. Физиологические свойства сердечной мышцы.

2. Автоматия сердца. Проводящая система сердца.

3. Связь между возбуждением и сокращением (электромеханическое сопряжение).

4. Сердечный цикл. Показатели сердечной деятельности

5. Основные законы сердечной деятельности.

6. Внешние проявления деятельности сердца.

Базовая информация.

Кровь может выполнять свои функции только находясь в непрерывном движении. Это движение обеспечивается системой кровообращения. Система кровообращения состоит из сердца и сосудов – кровеносных и лимфатических. Сердце за счет своей нагнетательной деятельности обеспечивает движение крови по замкнутой системе сосудов. Каждую минуту от сердца в кровеносную систему поступает около 6 л крови, в сутки – свыше 8 тыс. л, в течение жизни (средняя продолжительность 70 лет) – почти 175 млн. л крови. О функциональном состоянии сердца судят по различным внешним проявлениям его деятельности.

Сердце человека – полый мышечный орган. Сплошной вертикальной перегородкой сердце делится на две половины: левую и правую. Вторая перегородка, идущая в горизонтальном направлении, образует в сердце четыре полости: верхние полости – предсердия, нижние – желудочки.

Нагнетательная функция сердца основана на чередовании расслабления (диастолы) и сокращения (систолы) желудочков. Во время диастолы желудочки заполняются кровью, а во время систолы выбрасывают ее в крупные артерии (аорту и легочную вену). У выхода из желудочков расположены клапаны препятствующие обратному поступлению крови из артерий в сердце. Перед тем как заполнить желудочки кровь притекает по крупным венам (полым и легочным) в предсердия. Систола предсердий предшествует систоле желудочков, таким образом предсердия служат как бы вспомогательными насосами, способствующими заполнению желудочков.

Физиологические свойства сердечной мышцы. Сердечная мышца, как и скелетная, обладает возбудимостью , способностью проводить возбуждение и сократимостью. К физиологическим особенностям сердечной мышцы относится удлиненный рефрактерный период и автоматия.

Возбудимость сердечной мышцы. Сердечная мышца менее возбудима, чем скелетная. Для возникновения возбуждения в сердечной мышце необходимо применить более сильный раздражитель, чем для скелетной. Кроме того, установлено, что величина реакции сердечной мышцы не зависит от силы наносимых раздражений (электрических, механических, химических и т. д.). Сердечная мышца максимально сокращается и на пороговое, и на более сильное по величине раздражение, полностью подчиняясь закону «все или ничего».

Проводимость . Волны возбуждения проводятся по волокнам сердечной мышцы и так называемой специальной ткани сердца с неодинаковой скоростью. Возбуждение по волокнам мышц предсердий распространяется со скоростью 0,8 1,0 м/с, по волокнам мышц желудочков 0,8 0,9 м/с, по специальной ткани сердца 2,0 4,2 м/с. Возбуждение же по волокнам скелетной мышцы распространяется с гораздо большей скоростью, которая составляет 4,7 5 м/с.

Сократимость . Сократимость сердечной мышцы имеет свои особенности. Первыми сокращаются мышцы предсердий, затем папиллярные мышцы и субэндокардиальный слой мышц желудочков. В дальнейшем сокращение охватывает и внутренний слой желудочков, обеспечивая тем самым движение крови из полостей желудочков в аорту и легочный ствол. Сердце для осуществления механической работы (сокращения) получает энергию, которая освобождается при распаде макроэргических фосфорсодержащих соединений (креатинфосфат, аденозинтрифосфат).

Рефрактерный период . В сердце в отличие от других возбудимых тканей имеется значительно выраженный и удлиненный рефрактерный период. Он характеризуется резким снижением возбудимости ткани в течение ее активности.

Различают абсолютный и относительныйрефрактерный период. Во время абсолютного рефрактерного периода, какой бы СИЛЫ не наносили раздражение на сердечную мышцу, она не отвечает на него возбуждением и сокращением. Длительность абсолютного рефрактерного периода сердечной мышцы соответствует по времени систоле и началу диастолы предсердий и желудочков. Во время относительного рефрактерного периода возбудимость сердечной мышцы постепенно возвращается к исходному уровню. В этот период сердечная мышца может ответить сокращением на раздражитель сильнее порогового. Относительный рефрактерный период обнаруживается во время диастолы предсердий и желудочков сердца. Благодаря выраженному рефрактерному периоду, который длится дольше, чем период систолы (0,1 0,3 с), сердечная мышца неспособна к тетаническому (длительному) сокращению и совершает свою работу по типу одиночного мышечного сокращения.

Автоматия сердца . Вне организма при определенных условиях сердце способно сокращаться и расслабляться, сохраняя правильный ритм. Следовательно, причина сокращений изолированного сердца лежит в нем самом. Способность сердца ритмически сокращаться под влиянием импульсов, возникающих в нем самом, носит название а в т о м а т и и.

В сердце различают рабочую мускулатуру, представленную поперечно-полосатой мышцей, и атипическую ткань, в которой возникает проводится возбуждение. Из этой ткани образованы волокна водителя ритма (пейспекера) и проводящей системы. В норме ритмические импульсы генерируются только клетками водителя ритма и проводящей системы. У высших животных и человека проводящая система состоит из:

1. синоатриального узла (описан Кис и Флеком), располагающегося на задней стенке правого предсердия у места впадения полых вен;

2. атриовентрикулярного (предсердно-желудочковый) узла (описан Ашоффом и Таварой), находящегося в правом предсердии вблизи перегородки между предсердиями и желудочками;

3. пучка Гиса (предсердно-желудочковый пучок) (описан Гисом), отходящего от атриовентрикулярного узла одним стволом. Пучок Гиса, пройдя через перегородку между предсердиями и желудочками, делится на две ножки, идущие к правому и левому желудочкам.

4. Заканчивается пучок Гиса в толще мышц волокнами Пуркинье. Пучок Гиса – это единственный мышечный мостик, соединяющий предсердия с желудочками.

Синоаурикулярный узел является ведущим в деятельности сердца (водитель ритма), в нем возникают импульсы, определяющие частоту сокращений сердца. В норме атриовентрикулярный узел и пучок Гиса являются только передатчиками возбуждений из ведущего узла к сердечной мышце. Однако им присуща способность к автоматии, только выражена она в меньшей степени, чем у синоаурикулярного узла, и проявляется лишь в условиях патологии.

Атипическая ткань состоит из малодифференцированных мышечных волокон. В области синоаурикулярного узла обнаружено значительное количество нервных клеток, нервных волокон и их окончаний, которые здесь образуют нервную сеть. К узлам атипической ткани подходят нервные волокна от блуждающих и симпатических нервов.

Электрофизиологические исследования сердца, проведенные на клеточном уровне, позволили понять природу автоматики сердца. Установлено, что в волокнах ведущего и атриовентрикулярного узлов вместо стабильного потенциала в период расслабления сердечной мышцы наблюдается постепенное нарастание деполяризации. Когда последняя достигнет определенной величины – максимального диастолического потенциала , возникает ток действия. Диастолическую деполяризацию в волокнах водителя ритма называют потенциалами автоматии. Таким образом, наличие диастолической деполяризации объясняет природу ритмической деятельности волокон ведущего узла. В рабочих волокнах сердца электрическая активность во время диастолы отсутствует.

Связь между возбуждением и сокращением (электромеханическое сопряжение). Сокращение сердца, как и скелетных мышц, запускается потенциалом действия. Тем не менее временные соотношения между возбуждением и сокращением в этих двух типах мышц различны. Длительность потенциала действия скелетных мышц составляет лишь несколько миллисекунд, и сокращение их начинается тогда, когда возбуждение уже почти закончилось. В миокарде же возбуждение и сокращение в значительной степени перекрываются во времени. Потенциал действия клеток миокарда заканчивается только после начала фазы расслабления. Поскольку последующее сокращение может возникнуть лишь в результате очередного возбуждения, а это возбуждение в свою очередь возможно только по окончании периода абсолютной рефрактерности предшествующего потенциала действия, сердечная мышца в отличие от скелетной не может отвечать на частые раздражения суммацией одиночных сокращений, или тетанусом.

Это свойство миокарда – неспособность к состоянию тетануса — имеет большое значение для нагнетательной функции сердца; тетаническое сокращение, продолжающееся дольше периода изгнания крови, препятствовало бы наполнению сердца. Вместе с тем сократимость сердца не может регулироваться путем суммации одиночных сокращений, как это происходит в скелетных мышцах, сила сокращений которых в результате такой суммации зависит от частоты потенциалов действия. Сократимость миокарда в отличие от скелетных мышц не может изменяться и путем включения различного числа двигательных единиц, так как миокард представляет собой функциональный синцитий, в каждом сокращении которого участвуют все волокна (закон «все или ничего»). Эти несколько невыгодные с физиологической точки зрения особенности компенсируются тем, что в миокарде гораздо более развит механизм регуляции сократимости путем изменения процессов возбуждения либо за счет прямого влияния на электромеханическое сопряжение.

Механизм электромеханического сопряжения в миокарде . У человека и млекопитающих структуры, которые отвечают за электромеханическое сопряжение в скелетных мышцах, в основном имеются и в волокнах сердца. Для миокарда характерна система поперечных трубочек (Т-система); особенно хорошо она развита в желудочках, где эти трубочки образуют продольные ответвления. Напротив, система продольных трубочек, служащих внутриклеточным резервуаром Са 2+ , в мышце сердца развита в меньшей степени, чем в скелетных мышцах. Как структурные, так и функциональные особенности миокарда свидетельствуют в пользу тесной взаимосвязи между внутриклеточными депо Са 2+ и внеклеточной средой. Ключевым событием в сокращении служит вход в клетку Са 2+ во время потенциала действия. Значение этого кальциевого тока состоит не только в том, что он увеличивает длительность потенциала действия и вследствие этого рефрактерного периода: перемещение кальция из наружной среды в клетку создает условия для регуляции силы сокращения. Однако количество кальция, входящего во время ПД, явно недостаточно для прямой активации сократительного аппарата; очевидно, большую роль играет выброс Са 2+ из внутриклеточных депо, запускаемый входом Са 2+ извне. Кроме того, входящие в клетку ионы пополняет запасы Са 2+ , обеспечивая последующие сокращения.

Таким образом, потенциал действия влияет на сократимость по меньшей мере двумя путями. Он – играет роль пускового механизма («триггерное действие»), вызывающего сокращение путем высвобождения Са 2+ (преимущественно из внутриклеточных депо); – обеспечивает пополнение внутриклеточных запасов Са 2+ в фазе расслабления, необходимое для последующих сокращений.

Механизмы регуляции сокращений. Целый ряд факторов оказывает косвенное влияние на сокращение миокарда, изменяя длительность потенциала действия и тем самым величину входящего тока Са 2+ . Примеры такого влияния — снижение силы сокращений вследствие укорочения ПД при повышении внеклеточной концентрации К + или действии ацетилхолина и усиление сокращений в результате удлинения ПД при охлаждении. Увеличение частоты потенциалов действия влияет на сократимость так же, как и повышение их длительности (ритмоинотропная зависимость, усиление сокращений при нанесении парных стимулов, постэкстрасистолическая потенциация). Так называемый феномен лестницы (нарастание силы сокращений при их возобновлении после временной остановки) также связан с увеличением внутриклеточной фракции Са 2+ .

Учитывая эти особенности сердечной мышцы, не приходится удивляться тому, что сила сокращений сердца быстро изменяется при изменении содержания Са 2+ во внеклеточной жидкости. Удаление Са 2+ из внешней среды приводит к полному разобщению электромеханического сопряжения; потенциал действия при этом остается почти неизменным, но сокращений не происходит.

Ряд веществ, блокирующих вход Са 2+ во время потенциала действия, оказывает такой же эффект, как и удаление кальция из внешней среды. К таким веществам относятся так называемые антагонисты кальция (верапамил, нифедипин, дилтиазем) Напротив, при повышении внеклеточной концентрации Са 2+ или при действии веществ, увеличивающих вход этого иона во время потенциала действия (адреналин, норадреналин), сократимость сердца увеличивается. В клинике для усиления сердечных сокращений используют так называемые сердечные гликозиды (препараты наперстянки, строфанта и т. д.).

В соответствии с современными представлениями сердечные гликозиды повышают силу сокращений миокарда преимущественно путем подавления Nа+/К+-АТФазы (натриевого насоса), что приводит к повышению внутриклеточной концентрации Nа +. В результате снижается интенсивность обмена внутриклеточного Са 2+ на внеклеточный Nа+, зависящего от трансмембранного градиента Nа, и Са 2+ накапливается в клетке. Это дополнительное количество Са 2+ запасается в депо и может быть использовано для активации сократительного аппарата

Сердечный цикл совокупность электрических, механических и биохимических процессов, происходящих в сердце в течение одного полного цикла сокращения и расслабления.

Сердце человека в среднем сокращается 70 -75 раз в 1 мин, при этом одно сокращение длится 0,9 – 0,8 с. В цикле сокращений сердца различают три фазы: систолу предсердий (ее длительность 0,1 с), систолу желудочков (ее длительность 0,3 – 0,4 с) и общую паузу (период, в течение которого одновременно расслаблены и предсердия, и желудочки,-0,4 – 0,5 с).

Сокращение сердца начинается с сокращения предсердий. В момент систолы предсердий кровь из них проталкивается в желудочки через открытые атриовентрикулярные клапаны. Затем сокращаются желудочки. Предсердия во время систолы желудочков расслаблены, т. е. находятся в состоянии диастолы. В этот период атриовентрикулярные клапаны закрываются под давлением крови со стороны желудочков, а полулунные клапаны раскрываются и кровь выбрасывается в аорту и легочные артерии.

В систоле желудочков различают две фазы: фазу напряжения – период, в течение которого давление крови в желудочках достигает максимальной величины, и фазу изгнания – время, в течение которого открываются полулунные клапаны и кровь выбрасывается в сосуды. После систолы желудочков наступает их расслабление -диастола, которая длится 0,5 с. В конце диастолы желудочков начинается систола предсердий. В самом начале паузы полулунные клапаны захлопываются под давлением крови в артериальных сосудах. Во время паузы предсердия и желудочки наполняются новой порцией крови, поступающей из вен.

Показатели сердечной деятельности.

Показателями работы сердца являются систолический и минутный объем сердца,

Систолический или ударный объем сердца это количество крови, которое сердце выбрасывает в соответствующие сосуды при каждом сокращении. Величина систолического объема зависит от размеров сердца, состояния миокарда и организма. У взрослого здорового человека при относительном покое систолический объем каждого желудочка составляет приблизительно 70 80 мл. Таким образом, при сокращении желудочков в артериальную систему поступает 120 – 160 мл крови.

Минутный объем сердца это количество крови, которое сердце выбрасывает в легочный ствол и аорту за 1 мин. Минутный объем сердца это произведение величины систолического объема на частоту сердечных сокращений в 1 мин. В среднем минутный объем составляет 3 5 л.

Систолический и минутный объем сердца характеризует деятельность всего аппарата кровообращения.

Минутный объем сердца увеличивается пропорционально тяжести выполняемой организмом работы. При малой мощности работы минутный объем сердца увеличивается за счет повышения величины систолического объема и частоты сердечных сокращений, при большой мощности только за счет нарастания ритма сердца.

Работа сердца. Во время сокращения желудочков: кровь из них выбрасывается в артериальную систему.. Желудочки, сокращаясь, должны изгнать кровь в сосуды, преодолевая давление в артериальной системе. Кроме того, в период систолы желудочки способствуют ускорению тока крови по сосудам. Пользуясь физическими: формулами и средними значениями параметров (давление и ускорение тока крови) для левого и правого желудочков, можно вычислить, какую работу выполняет сердце во время одного сокращения. Установлено, что желудочки в период систолы совершают работу около 1 Дж с мощностью 3,3 Вт (учитывая, что систола желудочков продолжается 0,3 с) .

Суточная работа сердца равна работе крана, поднявшего груз массой 4000 кг на высоту 6-этажного дома. За 18 ч сердце совершает работу, за счет которой можно поднять человека массой 70 кг на высоту телебашни в Останкино 533 м. При физической работе производительность сердца значительно повышается.

Установлено, что объем крови, выбрасываемой при каждом сокращении желудочков, зависит от величины конечного диастолического наполнения полостей желудочков кровью. Чем больше крови поступает в желудочки во время их диастолы, тем сильнее растягиваются мышечные волокна, От степени же растяжения мышечных волокон находится в прямой зависимости сила, с которой сокращаются мышцы желудочков.

Законы сердечной деятельности

Закон сердечного волокна – описан английским физиологом Старлингом. Закон формулируется следующим образом: чем больше растянуто мышечное волокно, тем сильнее оно сокращается . Следовательно, сила сердечных сокращений зависит от исходной длины мышечных волокон перед началом их сокращений. Проявление закона сердечного волокна было установлено и на изолированном сердце животных, и на полоске сердечной мышцы, вырезанной из сердца.

Закон сердечного ритма описан английским физиологом Бейнбриджем. Закон гласит: чем больше крови притекает к правому предсердию, тем чаще становится ритм сердца . Проявление этого закона связано с возбуждением механорецепторов, расположенных в правом предсердии в области впадения полых вен. Механорецепторы, представленные чувствительными нервными окончаниями блуждающих нервов, возбуждаются при усиленном венозном – возврате крови к сердцу, например при мышечной работе. Импульсы от механорецепторов направляются по блуждающим нервам в продолговатый мозг к центру блуждающих нервов. Под влиянием этих импульсов снижается активность центра блуждающих нервов и усиливаются воздействия симпатических нервов на деятельность сердца, что и обусловливает учащение ритма сердца.

Законы сердечного волокна и сердечного ритма, как правило, проявляются одновременно. Значение этих законов состоит в том, что они приспосабливают работу сердца к изменяющимся условиям существования: изменению положения тела и отдельных его частей в пространстве, двигательной активности и т. д. Вследствие этого законы сердечного волокна и сердечного ритма относят к механизмам саморегуляции, за счет которых изменяется сила и частота сердечных сокращений.

Внешние проявления деятельности сердца Врач судит о работе сердца по внешним проявлениям его деятельности, к которым относятся верхушечный толчок, сердечные тоны и электрические явления, возникающие в работающем сердце.

Верхушечный толчок . Сердце во время систолы желудочков совершает вращательное движение, поворачиваясь слева направо, и меняет свою форму — из эллипсоидального оно становится круглым. Верхушка сердца поднимается и надавливает на грудную клетку в области пятого межреберного промежутка. Во время систолы сердце становится очень плотным, поэтому надавливание верхушки сердца на межреберный промежуток можно видеть, особенно у худощавых субъектов. Верхушечный толчок можно прощупать (пальпировать) и тем самым определить его границы и силу.

Сердечные тоны — это звуковые явления, возникающие в работающем сердце. Различают два тона: I – систолический и II – диастолический.

Систолический тон. В происхождении этого тона принимают участие главным образом атриовентрикулярные клапаны. Во время систолы желудочков атриовентрикулярные клапаны закрываются и колебания их створок и прикрепленных к ним сухожильных нитей обусловливают 1 тон. Установлено, что звуковые явления возникают в фазу изометрического сокращения и в начале фазы быстрого изгнания крови из желудочков. Кроме того, в происхождении 1 тона принимают участие звуковые явления, которые возникают при сокращении мышц желудочков. По своим звуковым особенностям 1 тон протяжный и низкий.

Диастолический тон возникает в начале диастолы желудочков во время протодиастолической фазы, когда происходит закрытие полулунных клапанов. Колебание створок клапанов при этом является источником звуковых явлений. По звуковой характеристике 11 тон короткий и высокий.

Использование современных методов исследования (фонокардиография) позволило обнаружить еще два тона — III и IV, которые не прослушиваются, но могут быть зарегистрированы в виде кривых, Параллельная запись электрокардиограммы помогает уточнить продолжительность каждого тона.

Тоны сердца (I и II) можно определить в любом участке грудной клетки. Однако имеются места наилучшего их прослушивания: I тон лучше выражен в области верхушечного толчка и у основания мечевидного отростка грудины, II тон — во втором межреберье слева от грудины и справа от нее. Тоны сердца прослушивают при помощи стетоскопа, фонендоскопа или непосредственно ухом.

Занятие 2. Электрокардиография

Вопросы для самоподготовки.

1. Биоэлектрические явления в сердечной мышце.

2. Регистрация ЭКГ. Отведения

3. Форма кривой ЭКГ и обозначение ее компонентов.

4. Анализ электрокардиограммы.

5. Использование ЭКГ в диагностике Влияние физической нагрузки на ЭКГ

6. Некоторые патологические типы ЭКГ.

Базовая информация.

Возникновение электрических потенциалов в сердечной мышце связано с движением ионов через клеточную мембрану. Основную роль при этом играют катионы натрия и калия Содержание калия внутри клетки значительно больше во внеклеточной жидкости. Концентрация внутриклеточного натрия, наоборот, намного меньше, чем вне клетки. В состоянии покоя наружная поверхность клетки миокарда заряжена положительно вследствие преобладания там катионов натрия; внутренняя поверхность клеточной мембраны имеет отрицательный заряд вследствие преобладания внутри клетки анионов (С1 - , НСО 3 - .). В этих условиях клетка поляризована; при регистрации электрических процессов с помощью наружных электродов разности потенциалов не будет выявлено. Однако если в этот период ввести микроэлектрод внутрь клетки, то будет зарегистрирован так называемый потенциал покоя, достигающий 90 мВ. Под воздействием внешнего электрического импульса клеточная мембрана становится проницаемой для катионов натрия, которые устремляются внутрь клетки (вследствие разности внутри- и внеклеточной концентраций) и переносят туда свой положительный заряд. Наружная поверхность данного участка приобретает отрицательный заряд вследствие преобладания там анионов. При этом появляется разность потенциалов между положительным и отрицательным участками поверхности клетки и регистрирующий прибор зафиксирует отклонение от изоэлектрической линии. Этот процесс носит название деполяризации и связан с потенциалом действия. Вскоре вся наружная поверхность клетки приобретает отрицательный заряд, а внутренняя – положительный, т. е. происходит обратная поляризация. Регистрируемая кривая при этом вернется к изоэлектрической линии. В конце периода возбуждения клеточная мембрана становится менее проницаемой для ионов натрия, но более проницаемой для катионов калия; последние устремляются из клетки (вследствие разности вне- и внутриклеточной концентрации). Выход калия из клетки в этот период преобладает над поступлением натрия в клетку, поэтому наружная поверхность мембраны снова постепенно приобретает положительный заряд, я внутренняя — отрицательный. Этот процесс носит название реполяризации Регистрирующий прибор вновь зафиксирует отклонение кривой, но в другую сторону (так как положительный и отрицательный полюсы клетки поменялись местами) и меньшей амплитуды (так как поток ионов К + движется медленнее). Описанные процессы происходят во время систолы желудочков. Когда вся наружная поверхность вновь приобретет положительный заряд, внутренняя – отрицательный, на кривой снова будет зафиксирована изоэлектрическая линия, что соответствует диастоле желудочков. Во время диастолы происходит медленное обратное движение ионов калия и натрия, которое мало влияет на заряд клетки, так как такие разнонаправленные перемещения ионов происходят одновременно и уравновешивают друг друга.

Описанные процессы относятся к возбуждению единичного волокна миокарда. Возникающий при деполяризации импульс вызывает возбуждение соседних участков миокарда и этот процесс охватывает весь миокард по типу цепной реакции. Распространение возбуждения по миокарду осуществляется по проводящей системе сердца.

Таким образом, в работающем сердце создаются условия для возникновения электрического тока. Во время систолы предсердия становятся электроотрицательными по отношению к желудочкам, находящимся в это время в фазе диастолы. Таким образом, при работе сердца возникает разность потенциалов, которая может быть зарегистрирована при помощи электрокардиографа. Запись изменения суммарного электрического потенциала, возникающего при возбуждении множества миокардиальных клеток называется электрокардиограммой (ЭКГ) которая отражает процесс возбуждения сердца, но не его сокращения .

Тело человека является хорошим проводником электрического тока, поэтому биопотенциалы, возникающие в сердце, могут быть обнаружены на поверхности тела. Регистрация ЭКГ осуществляется с помощью электродов, накладываемых на различные участки тела. Один из электродов подсоединен к положительному полюсу гальванометра, другой – к отрицательному. Система расположения электродов называется электрокардиографическими отведениями. В клинической практике наиболее распространены отведения с поверхности тела. Как правило при регистрации ЭКГ используют 12 общепринятых отведений: – 6 от конечностей и 6 – грудных.

Эйнтховен (1903) одним из первых зарегистрировал биопотенциалы сердца, отводя их с поверхности тела при помощи струнного гальванометра. Им предложены первые три классических стандартных отведения . В этом случае электроды накладывают следующим образом:

I – на внутренней поверхности предплечий обеих рук; левая (+), правая (-).

II – на правой руке (-) и в области икроножной мышцы левой ноги (+);

III – на левых конечностях; нижняя (+), верхняя (-) .

Оси этих отведений в грудной клетке образуют во фронтальной плоскости так называемый треугольник Эйтховена.

Регистрируют также усиленные отведения от конечностей AVR – от правой руки, AVL – от левой руки, aVF – от левой ноги. При этом к положительному полюсу аппарата подсоединяют проводник электрода от соответствующей конечности, а к отрицательному полюсу – объединенный проводник электродов от двух остальных конечностей.

Шесть грудных отведений обозначают V 1- V 6 . При этом электрод от положительного полюса устанавливают на следующие точки:

V 1 - в четвертом межреберье у правого края грудины;

V 2 - в четвертом межреберье у правого края грудины;

V 3 - посередине между точками V 1 и V 2 ;

V 4 - в пятом межреберье по левой срединно-ключичной линии;

V 5 - на уровне отведения V 4 по левой передней аксиллярной линии;

V 6 - на том же уровне по левой аксиллярной линии.

Форма зубцов ЭКГ и обозначение ее компонентов.

Нормальная электрокардиограмма (ЭКГ) состоит из ряда положительных и отрицательных колебаний (зубцов ) обозначаемых латинскими буквами от Р до Т. Расстояния между двумя зубцами называют сегментом , а совокупность зубца и сегмента – интервалом .

При анализе ЭКГ учитывают высоту, ширину, направление, форму зубцов, а также продолжительность сегментов и интервалов между зубцами и их комплексами. Высота зубцов характеризует возбудимость, продолжительность зубцов и интервалов между ними отражает скорость проведения импульсов в сердце.

3 у б е ц Р характеризует возникновение и распространение возбуждения в предсердиях. Продолжительность его не превышает 0,08 – 0,1 с., амплитуда – 0,25 мВ. В зависимости от отведения может быть и положительным и отрицательным.

И н т е р в а л Р-Q отсчитывается от начала зубца Р, до начала зубца Q, или при его отсутствии – R. Предсердно-желудочковый интервал характеризует скорость распространения возбуждения от ведущего узла к желудочкам, т.о. характеризует прохождение импульса по наибольшему участку проводящей системы сердца. В норме, продолжительность интервала 0,12 – 0,20 с., и зависит от частоты сердечного ритма.

Таб.1 Максимальная нормальная продолжительность интервала P-Q

при различной частоте сердечного ритма

Продолжительность интервала P-Q в сек.

Частота сокращений сердца в 1 мин.

Продолжительность

3 у б е ц Q это всегда направленный вниз зубец желудочкового комплекса, предшествующий зубцу R. Отражает возбуждение межжелудочковой перегородки и внутренних слоев миокарда желудочков. В норме этот зубец очень небольшой, нередко на ЭКГ не обнаруживается.

3 у б е ц R это любой положительный зубец комплекса QRS, самый высокий зубец ЭКГ (0,5-2,5 мВ), соответствует периоду охвата возбуждением обоих желудочков.

3 у б е ц S любой следующий за зубцом R отрицательный зубец комплекса QRS характеризует завершение распространения возбуждения в желудочках. Максимальная глубина зубца S в отведении где он наиболее выражен, в норме, не должна превышать 2.5 мВ.

К о м п л е к с з у б ц о в QRS отражает скорость распространения возбуждения по мышцам желудочков. Измеряют от начала зубца Q до конца зубца S. Продолжительность этого комплекса 0,06 – 0,1 с.

3 у б е ц T отражает процесс реполяризации в желудочках. В зависимости от отведения может быть и положительным и отрицательным. Высота этого зубца характеризует состояние обменных процессов., происходящих в сердечной мышце. Ширина зубца Т колеблется от 0.1 до 0.25 с, но эта величина не имеет существенного значения в анализе ЭКГ.

И н т е р в а л Q-Т соответствует продолжительности всего периода возбуждения желудочков. Он может рассматриваться как электрическая систола сердца и поэтому имеет важное значение как показатель характеризующий функциональные возможности сердца. Измеряется от начала зубца Q(R) до конца зубца Т. Продолжительность этого интервала зависит от частоты сердечных сокращений и рядя других факторов. Она выражается формулой Базетта:

Q-T = K Ö R-R

где К- константа равная для мужчин – 0,37, а для женщин – 0,39. Интервал R-R отражает длительность сердечного цикла в секундах.

Т а б 2. Минимальная и максимальная длительность интервала Q – Т

в норме при различной частоте ритма сердца

40 – 41 0.42 – 0,51 80 – 83 0,30 – 0,36

42 – 44 0.41 – 0,50 84 – 88 0,З0 -0,35

45 – 46 0.40 – 0,48 89 – 90 0,29 – 0,34

47 – 48 0.39 – 0,47 91 – 94 0,28 – 0,34

49 – 51 0.38 – 0,46 95 – 97 0,28 – 0.33

52 – 53 0.37 – 0,45 98 – 100 0,27 – 0,33

54 – 55 0.37 – 0,44 101 – 104 0,27 – 0,32

56 – 58 0.36 – 0,43 105 – 106 0,26 – 0,32

59 – 61 0.35 – 0,42 107 – 113 0,26 – 0,31

62 – 63 0.34 – 0,41 114 – 121 0,25 – 0,30

64 – 65 0.34 – 0,40 122 – 130 0,24 – 0,29

66 – 67 0,ЗЗ – 9,40 131 – 133 0,24 – 0,28

68 – 69 0,33 – 0,39 134 – 139 0,23 – 0,28

70 – 71 0.32 – 0,39 140 – 145 0,23 – 0,27

72 – 75 0.32 – 0,38 146 – 150 0.22 – 0,27

76 – 79 0.31 – 0,37 151 – 160 0,22 – 0,26

С е г м е н т Т-Р – это отрезок электрокардиограммы от конца зубца Т до начала зубца Р. Этот интервал соответствует покою миокарда, он характеризует отсутствие разности потенциалов в сердце (общая пауза). Этот интервал представляет собой изоэлектрическую линию.

Анализ электрокардиограммы.

При анализе ЭКГ прежде всего необходимо проверить правильность техники ее регистрации, в частности амплитуду контрольного милливольта (соответствует ли она 1 см). Неправильная калибровка аппарата может существенно изменить амплитуду зубцов и привести к диагностическим ошибкам.

Для правильного анализа ЭКГ необходимо, также, точно знать скорость движения ленты во время записи. В клинической практике ЭКГ обычно регистрируют при скорости ленты 50 или 25 мм/с. (Ширина интервала Q- T при записи со скоростью 25 мм./ с никогда не достигает трех, а чаще даже меньше двух клеток, т.е. 1 см или 0,4 с. Таким образом, по ширине интервала Q- T, как правило, можно определить, при какой скорости движения ленты записана ЭКГ.)

Анализ сердечного ритма и проводимости. Расшифровку ЭКГ обычно начинают с анализа сердечного ритма. Прежде всего следует оценить регулярность интервалов R-R во всех зарегистрированных циклах ЭКГ. Затем определяется частота ритма желудочков. Для этого нужно разделить 60 (число секунд в минуте) на величину интервала R-R, выраженную в секундах. Если ритм сердца правильный (интервалы R-R равны между собой), то полученное частное будет соответствовать числу сокращений сердца в минуту.

Для выражения интервалов ЭКГ в секундах необходимо помнить, что 1 мм сетки (одна маленькая клетка.) соответствует 0,02 с при записи со скоростью ленты 50 мм/с и 0,04 с при скорости 25 мм/с. Для определения продолжительности интервала R-R в секундах нужно умножить число клеток, уместившихся в этом интервале, на величину, соответствующую одной клетке сетки. В случае, если ритм желудочков неправильный и интервалы различны, для определения частоты ритма используют среднюю продолжительность, вычисленную по нескольким интервалам R-R.

В случае если ритм желудочков неправильный и интервалы различны, для определения частоты ритма используют среднюю продолжительность, вычисленную по нескольким интервалам R-R.

После подсчета частоты ритма следует определить его источник. Для этого необходимо выявить зубцы Р и их отношение к желудочковым комплексам QRS Если при анализе выявляются зубцы Р, имеющие нормальную форму и направление и предшествующие каждому комплексу QRS, то можно констатировать, что источником ритма сердца является синусовый узел, что является нормой. Если нет – следует обратиться к врачу.

Анализ зубца Р . Оценка амплитуды зубцов Р позволяет выявить возможные признаки изменения миокарда предсердий. Амплитуда зубца Р в норме не превышает 0.25 мВ. Зубец Р имеет наибольшую высоту во II отведении.

Если амплитуда зубцов Р возрастает в I отведении, приближаясь к амплитуде Р II и значительно превышает амплитуду Р III то говорят об отклонении предсердного вектора влево, что может быть одним из признаков увеличения левого предсердия.

Если же высота зубца Р в III отведении значительно превышает высоту Р в I отведении и приближается к Р II то говорят об отклонении предсердного вектора вправо, что наблюдается при гипертрофии правого предсердия.

Определение положения электрической оси сердца. Положение оси сердца во фронтальной плоскости определяют по соотношению величин зубцов R и S в отведениях от конечностей. Положение электрической оси дает представление о положении сердца в грудной клетке. Кроме того, изменение положения электрической оси сердца является диагностическим признаком ряда патологических состояний. Поэтому оценка этого показателя имеет важное практическое значение.

Электрическую ось сердца выражают в градусах угла, образованного в шестиосевой системе координат этой осью и осью первого отведения, которая соответствует 0 0 . Для определения величины этого угла подсчитывают соотношение амплитуд положительных и отрицательных зубцов комплекса QRS в двух любых отведениях от конечностей, (как правило в отведениях I и III). Вычисляют алгебраическую сумму величин положительных и отрицательных зубцов в каждом из двух отведений с учетом знака. А затем откладывают эти величины на осях соответствующих отведений в шестиосевой системе координат от центра в сторону соответствующего знака. Из вершин полученных векторов восстанавливают перпендикуляры и находят точку их пересечения. Соединив эту точку с центром, получают результирующий вектор, соответствующий направлению электрической оси сердца, и подсчитывают величину угла.

Положение электрической оси сердца у здоровых людей находится в пределах от 0 0 до +90 0 .Положение электрической оси от +30 0 до +69 0 называют нормальным.

Анализ сегмента S- T. Этот сегмент в норме, изоэлектричен. Смещение сегмента S-T выше изоэлектрической линии может указывать па острую ишемию или инфаркт миокарда, аневризму сердца, иногда наблюдается при перикардитах, реже при диффузных миокардитах и гипертрофии желудочков, а также у здоровых лиц с так называемым синдромом ранней реполяризации желудочков.

Смещенный ниже изоэлектрической линии сегмент S-T может быть различной формы и направления, что имеет определенное диагностическое значение. Так, горизонтальная депрессия этого сегмента чаще является признаком коронарной недостаточности; нисходящая депрессия , чаще наблюдается при гипертрофии желудочка и полной блокаде ножек пучка Гиса; корытообразное смещение данного сегмента в виде дуги, выгнутой вниз, характерно для гипокалиемии (дигиталисной интоксикации) и, наконец, восходящая депрессия сегмента чаще имеет место при выраженной тахикардии.

Анализ зубца Т . При оценке зубца Т обращают внимание на его направление, форму и амплитуду. Изменения зубца Т неспецифичны: они могут наблюдаться при самых разнообразных патологических состояниях. Так, увеличение амплитуды зубца Т может отмечаться при ишемии миокарда, гипертрофии левого желудочка, гиперкалиемии и изредка наблюдается у нормальных лиц. Уменьшение амплитуды («сглаженный» зубец Т) может наблюдаться при дистрофиях миокарда, кардиомиопатиях, атеросклеротическом и постинфарктном кардиосклерозе, а также при заболеваниях, вызывающих уменьшение амплитуды всех зубцов ЭКГ.

Двухфазные или отрицательные (инвертированные) зубцы Т в тех отведениях, где они в норме положительны, могут иметь место при хронической коронарной недостаточности, инфаркте миокарда, гипертрофии желудочков, дистрофиях миокарда и кардиомиопатиях, миокардитах, перикардитах, гипокалиемии, нарушениях мозгового кровообращения и других состояниях. При выявлении изменений зубца Т их необходимо сопоставить с изменениями комплекса QRS и сегмента S -Т.

Анализ интервала Q-Т . Учитывая, что этот интервал характеризует электрическую систолу сердца, его анализ имеет важное диагностическое значение.

При нормальном состоянии сердца расхождения между фактической и должной систолой составляют не более 15% в ту или другую сторону. Если эти величины укладываются в данные параметры, то это говорит о нормальном распространении волн возбуждения по сердечной мышце.

Распространение возбуждения по сердечной мышце характеризует не только длительность электрической систолы, но и так называемый систолический показатель (СП), представляющий отношение длительности электрической систолы к продолжительности всего сердечного цикла (в процентах):

СП = ——— x 100%.

Отклонение от нормы, которая определяется по той же формуле с использованием Q-Т долж, не должно превышать 5% в обе стороны.

Иногда интервал Q-Т удлиняется под влиянием медикаментозных средств, а также при отравлениях некоторыми алкалоидами.

Таким образом, определение амплитуды основных зубцов и длительности интервалов электрокардиограммы дает возможность судить о состоянии сердца.

Заключение по анализу ЭКГ. Результаты анализа ЭКГ оформляются а виде протокола на специальных бланках. Проведя анализ перечисленных показателей, необходимо сопоставить их с клиническими данными и сформулировать заключение по ЭКГ. В нем следует указать источник ритма, назвать обнаруженные нарушения ритма и проводимости, отметить выявленные признаки изменений миокарда предсердий и желудочков, указав, по возможности, их характер (ишемия, инфаркт, рубцы, дистрофия, гипертрофия и т. д.) и локализацию.

Использование ЭКГ в диагностике

ЭКГ имеет чрезвычайно важное значение в клинической кардиологии, так как это исследование позволяет распознать нарушения возбуждения сердца, являющиеся причиной или следствием его поражения. По обычным кривым ЭКГ врач может судить о следующих проявлениях деятельности сердца и его патологических состояниях.

* Частота сокращений сердца . Можно определить нормальную частоту (6О – 90 уд. в 1 мин в покое), тахикардию (более 90 уд. в 1 мин) или брадикардию (менее 6О уд. в 1 мин).

* Локализация очага возбуждения. Можно установить, расположен ли ведущий пейсмекер в синусном узле, предсердиях, АВ-узле, правом или левом желудочке.

* Нарушения ритма сердца . ЭКГ дает возможность распознать различные виды аритмий (синусовая аритмия, наджелудочковые и желудочковые экстрасистолы, трепетание и фибрилляция) и выявить их источник.

* Нарушения проведения. Можно определить степень и локализацию блокады или задержки проведения (например, при синоатриальной или атриовентрикулярной блокаде, блокаде правой или левой ножки пучка Гиса или их ветвей либо при комбинированных блокадах).

* Направление электрической оси сердца . Направление электрической оси сердца отражает его анатомическое расположение, а при патологии указывает на нарушение распространения возбуждения (гипертрофия одного, из отделов сердца, блокада ножки пучка Гиса и т. п.).

* Влияние различных внешних факторов на сердце . На ЭКГ отражаются влияния вегетативных нервов, гормональные и обменные нарушения, сдвиги в концентрациях электролитов, действие ядов, лекарств (например, наперстянки) и т.д.

* Поражения сердца . Существуют электрокардиографические симптомы недостаточности коронарного кровообращения, снабжения сердца кислородом, воспалительных заболеваний сердца, поражений сердца при общих патологических состояниях и травмах, при врожденных или приобретенных пороках сердца и т. п.

* Инфаркт миокарда (полное нарушение кровоснабжения какого-либо участка сердца). По ЭКГ можно судить о локализации, обширности и динамике инфаркта.

Следует, однако, помнить, что отклонения ЭКГ от нормы, за исключением некоторых типичных признаков нарушения возбуждения и проведения, дают возможность только предположить наличие патологии. О том, является ли ЭКГ нормальной или патологической, часто можно судить лишь на основании общей клинической картины, и окончательное решение о причине тех или иных нарушений ни в коем случае нельзя принимать исходя только из ЭКГ.

Некоторые патологические типы ЭКГ

Разберем на примере нескольких типичных кривых, как отражаются на ЭКГ нарушения ритма и проводимости. За исключением особо оговоренных случаев, везде будут характеризоваться кривые, записанные при стандартном отведении II.

В норме в сердце наблюдается синусный ритм . . Пейсмекер расположен в СА-узле; QRS-комплексу предшествует нормальный зубец Р. Если роль водителя ритма берет на себя другой отдел проводящей системы наблюдается нарушение ритма сердца.

Ритмы, возникающие в атриовентрикулярном соединении. При таких ритмах импульсы из источника, расположенного в области АВ-соединения (в АВ-узле и непосредственно прилегающих к нему отделах проводящей системы), поступают как в желудочки, так и в предсердия. При этом импульсы могут проникать и в СА-узел. Поскольку возбуждение распространяется по предсердиям ретроградно, зубец Р в таких случаях отрицателен, а комплекс QRS не изменен, так как внутрижелудочковое проведение не нарушено. В зависимости от временных соотношений между ретроградным возбуждением предсердий и возбуждением желудочков отрицательный зубец Р может предшествовать комплексу QRS, сливаться с ним или следовать за ним. В этих случаях говорят соответственно о ритме из верхнего, среднего или нижнего отдела АВ-соединения, хотя эти термины не совсем точны.

Ритмы, возникающие в желудочке . Движение возбуждения из эктопического внутрижелудочкового очага может идти разными путями в зависимости от местонахождения этого очага и от того, в какой момент и где именно возбуждение проникает в проводящую систему. Поскольку скорость проведения в миокарде меньше, чем в проводящей системе, длительность распространения возбуждения в таких случаях обычно увеличена. Ненормальное проведение импульса приводит к деформации комплекса QRS.

Экстрасистолы. Внеочередные сокращения, временно нарушающие ритм сердца, называются экстрасистолами. Импульсы вызывающие экстрасистолы могут поступать из различных отделов проводящей системы сердца. В зависимости от места возникновения различают наджелудочковые (предсердные если внеочередной импульс приходит из СА-узла или предсердий; предсердно-желудочковые – если из АВ-соединения), и желудочковые .

В простейшем случае экстрасистолы возникают в промежутке между двумя нормальными сокращениями и не влияют на них; такие экстрасистолы называют интерполированными. Интерполированные экстрасистолы встречаются крайне редко, так как они могут возникать лишь при достаточно медленном исходном ритме, когда интервал между сокращениями длительнее одиночного цикла возбуждения. Такие экстрасистолы всегда исходят из желудочков, поскольку возбуждение из желудочкового очага не может распространяться по проводящей системе, находящейся в фазе рефрактерности предыдущего цикла, переходить на предсердия и нарушать синусный ритм.

Если желудочковые экстрасистолы возникают на фоне более высокой частоты сокращений сердца, то они, как правило, сопровождаются так называемыми компенсаторными паузами . Это связано с тем, что очередной импульс из СА-узла поступает к желудочкам, когда они еще находятся в фазе абсолютной рефрактерности экстрасистолического возбуждения, из-за чего импульс не может их активировать. К моменту прихода следующего импульса желудочки уже находятся в состоянии покоя, поэтому первое постэкстрасистолическое сокращение следует в нормальном ритме.

Промежуток времени между последним нормальным сокращением и первым постэкстрасистолическим равен двум интервалам RR, однако, когда наджелудочковые или желудочковые экстрасистолы проникают в СА-узел, наблюдается сдвиг по фазе исходного ритма. Этот сдвиг связан с тем, что возбуждение, ретроградно прошедшее в СА-узел, прерывает диастолическую деполяризацию в его клетках, вызывая новый импульс.

Нарушения атриовентрикулярного проведения . Это нарушения проведения через атриовентрикулярный узел, выражающееся в разобщении работы синоатриального и атриовентрикулярного узлов. При полной атриовентрикулярной блокаде предсердия и желудочки сокращаются независимо друг от друга – предсердия в синусном ритме, а желудочки в более медленном ритме пейсмекера третьего порядка. Если водитель ритма желудочков при этом локализован в пучке Гиса, то распространение возбуждения по нему не нарушается и форма QRS-комплекса не искажается.

При неполной атриовентрикулярной блокаде импульсы от предсердий периодически не проводятся на желудочки; например, к желудочкам может проходить только каждый второй (блокада 2: 1) или каждый третий (блокада 3: 1) импульс из СА-узла. В некоторых случаях интервал РQ постепенно увеличивается, и наконец наблюдается выпадение QRS-комплекса; затем вся эта последовательность повторяется (периоды Венкебаха). Подобные нарушения атриовентрикулярной проводимости легко могут быть получены в эксперименте при воздействиях, снижающих потенциал покоя (увеличение содержания К +, гипоксия и т.д.).

Изменения сегмента SТ и зубца Т . При повреждениях миокарда, связанных с гипоксией или другими факторами, в одиночных волокнах миокарда прежде всего снижается уровень плато потенциала действия и лишь затем наступает существенное уменьшение потенциала покоя. На ЭКГ эти изменения проявляются во время фазы реполяризации: зубец Т уплощается или становится отрицательным, а сегмент SТ смещается вверх или вниз от изолинии.

В случае прекращения кровотока в одной из коронарных артерий (инфаркт миокарда) формируется участок омертвевшей ткани, о расположении которого можно судить, анализируя одновременно несколько отведений (в частности, грудных). Следует помнить, что ЭКГ при инфаркте претерпевает значительные изменения во времени. Для ранней стадии инфаркта характерен «монофазный» желудочковый комплекс, обусловленный подъемом сегмента SТ. После того как пораженный участок отграничивается от неповрежденной ткани, монофазный комплекс перестает регистрироваться.

Трепетание и мерцание (фибрилляция) предсердий . Эти аритмии связаны с хаотическим распространением возбуждения по предсердиям, в результате которого происходит функциональная фрагментация этих отделов – одни участки сокращаются, а другие в это время находятся в состоянии расслабления.

При трепетании предсердий на ЭКГ вместо зубца Р регистрируются так называемые волны трепетания, имеющие одинаковую пилообразную конфигурацию и следующие с частотой (220-350)/мин. Это состояние сопровождается неполной атриовентрикулярной блокадой (желудочковая проводящая система, обладающая длительным рефрактерным периодом, не пропускает такие частые импульсы), поэтому на ЭКГ через одинаковые интервалы появляются неизмененные QRS-комплексы.

При мерцании предсердий активность этих отделов регистрируется только в виде высокочастотных – (350 -600)/мин – нерегулярных колебаний. Интервалы между QRS-комплексами при этом различны (абсолютная аритмия), однако, если других нарушений ритма и проводимости нет, конфигурация их не изменена.

Существует ряд промежуточных состояний между трепетанием и мерцанием предсердий. Как правило, гемодинамика при этих нарушениях страдает незначительно, иногда такие больные даже не подозревают о существовании у них аритмии.

Трепетание и фибрилляция желудочков . Трепетание и фибрилляция желудочков чреваты гораздо более серьезными последствиями. При этих аритмиях возбуждение распространяется по желудочкам хаотически, и в результате страдают их наполнение и выброс крови. Это приводит к остановке кровообращения и потере сознания. Если в течение нескольких минут движение крови не восстанавливается, наступает смерть.

При трепетании желудочков на ЭКГ регистрируются высокочастотные крупные волны, а при их фибрилляции – колебания различной формы, величины и частоты. Трепетание и фибрилляция желудочков возникают при разных воздействиях на сердце – гипоксии, закупорке коронарной артерии (инфаркте), чрезмерном растяжении и охлаждении, передозировке лекарств, в том числе вызывающих наркоз, и т. п. Фибрилляция желудочков является самой частой причиной смерти при электротравме.

Уязвимый период . Как в эксперименте, так и в естественных условиях одиночный надпороговый электрический стимул может вызвать трепетание или фибрилляцию желудочков, если он попадает в так называемый уязвимый период. Этот период наблюдается во время фазы реполяризации и приблизительно совпадает с восходящим коленом зубца Т на ЭКГ. В уязвимый период одни клетки сердца находятся в состоянии абсолютной, а другие – относительной рефрактерности. Известно, если на сердце наносить раздражение во время фазы относительной рефрактерности, то следующий рефрактерный период будет короче, и кроме того, в этот период может наблюдаться односторонняя блокада проведения. Благодаря этому создаются условия для обратного распространения возбуждения. Экстрасистолы, возникающие в уязвимый период, могут, подобно электрическому раздражению, привести к фибрилляции желудочков.

Электрическая дефибрилляция . Электрическим током можно не только вызвать трепетание и фибрилляцию, но и при определенных условиях его применения прекратить эти аритмии. Для этого необходимо приложить одиночный короткий импульс тока силой в несколько ампер. При воздействии таким импульсом через широкие электроды, помещенные на неповрежденную поверхность грудной клетки, хаотические сокращения сердца обычно мгновенно прекращаются. Такая электрическая дефибрилляция служит самым надежным способом борьбы с грозными осложнениями -трепетанием и, фибрилляцией желудочков.

Синхронизирующее действие электрического тока, приложенного к обширной поверхности, очевидно, обусловлено тем, что этот ток одновременно возбуждает множество участков миокарда, не пребывающих в состоянии рефрактерности. В результате циркулирующая волна застает эти участки в фазе рефрактерности, и дальнейшее ее проведение блокируется.

ТЕМА: ФИЗИОЛОГИЯ КРОВООБРАЩЕНИЯ

Занятие 3. Физиология сосудистого русла.

Вопросы для самоподготовки

  1. Функциональная структура различных отделов сосудистого русла. Кровеносные сосуды. Закономерности движения крови по сосудам. Основные гемодинамические показатели. Факторы, влияющие на движение крови по сосудам.
  2. Кровяное давление и факторы, влияющие на него. Артериальное давление, измерение, основные показатели, анализ определяющих факторов.
  3. Физиология микроциркуляции
  4. Нервная регуляция гемодинамики. Сосудодвигательный центр и его локализация.

5. Гуморальная регуляция гемодинамики

  1. Лимфа и лимфообращение.

Базовая информация

Типы кровеносных сосудов, особенности их строения.

По современным представлениям, в сосудистой системе различают несколько видов сосудов: магистральные, резистивные, истинные капилляры, емкостные и шунтирующие.

Магистральные сосуды – это наиболее крупные артерии, в которых ритмически пульсирующий, изменчивый кровоток превращается в более равномерный и плавный. Стенки этих сосудов содержат мало гладкомышечных элементов и много эластических волокон. Магистральные сосуды оказывают небольшое сопротивление кровотоку.

Резистивные сосуды (сосуды сопротивления) включают в себя прекапиллярные (мелкие артерии, артериолы, прекапиллярные сфинктеры) и посткапиллярные (венулы и мелкие вены) сосуды сопротивления. Соотношение между тонусом пре- и посткапиллярных сосудов определяет уровень гидростатического давления в капиллярах, величину фильтрационного давления и интенсивность обмена жидкости.

Истинные капилляры (обменные сосуды) важнейший отдел сердечно-сосудистой системы. Через тонкие стенки капилляров происходит обмен между кровью и тканями (транскапиллярный обмен). Стенки капилляров не содержат гладкомышечных элементов.

Емкостные сосуды венозный отдел сердечно-сосудистой системы. Емкостными эти сосуды называют потому, что они вмещают примерно 70-80 % всей крови.

Шунтирующие сосуды артериовенозные анастомозы, обеспечивающие прямую связь между мелкими артериями и венами в обход капиллярного ложа.

Закономерности движения крови по сосудам, значение эластичности сосудистой стенки.

В соответствии с законами гидродинамики движение крови определяется двумя силами: разностью давлений в начале и конце сосуда (способствует продвижению жидкости по сосуду) и гидравлическим сопротивлением , которое препятствует току жидкости. Отношение разности давлений к сопротивлению определяет объемную скорость тока жидкости.

Объемная скорость тока жидкости объем жидкости, протекающей по трубам в единицу времени, выражается простым уравнением:

Q= ————-

где Q – объем жидкости; Р1-Р2 – разность давлений в начале и конце сосуда, по которому течет жидкость; R – сопротивление потоку.

Эта зависимость носит название основного гидродинамического закона , который формулируется так; количество крови, протекающей в единицу времени через кровеносную систему, тем больше, чем больше разность давлений в ее артериальном и венозном концах и чем меньше сопротивление току крови. Основной гидродинамический закон определяет и кровообращение в целом, и течение крови через сосуды отдельных органов.

Время кругооборота крови. Временем кругооборота крови называют время, необходимое для прохождения крови по двум кругам кровообращения. Установлено, что у взрослого здорового человека при 70-80 сокращениях сердца в 1 мин полный кругооборот крови происходит за 20-23 с. Из этого времени ‘/5 приходится на малый круг кровообращения и 4/5 - на большой.

Существует ряд методов, с помощью которых определяют время кругооборота крови. Принцип этих методов состоит в том, что в вену вводят какое-либо вещество, не встречающееся обычно в организме, и определяют,через какой промежуток времени оно появляется в одноименной вене другой стороны или вызывает характерное для него действие.

В настоящее время для определения времени кругооборота крови используют радиоактивный метод. В локтевую вену вводят радиоактивный изотоп, например 24 Na, на другой же руке специальным счетчиком регистрируют его появление в крови.

Время кругооборота крови при нарушениях деятельности сердечно-сосудистой системы может существенно изменяться. У больных с тяжелыми заболеваниями сердца время кругооборота крови может увеличиваться до 1 мин.

Движение крови в различных отделах системы кровообращения характеризуется двумя показателями - объемной.и линейной скоростью кровотока.

Объемная скорость кровотока одинакова в поперечном сечении любого участка сердечно-сосудистой системы. Объемная скорость в аорте равна количеству крови, выбрасываемой сердцем в единицу времени, то есть минутному объему крови. Такое же количество крови поступает к сердцу по полым венам за 1 мин. Одинакова объемная скорость крови, притекающей и оттекающей от органа.

На объемную скорость кровотока оказывают влияние в первую очередь разность давления в артериальной и венозной системах и сопротивление сосудов. Повышение артериального и снижение венозного давления обусловливает увеличение разности давления в артериальной и венозной системах, что приводит к нарастанию скорости кровотока в сосудах. Снижение артериального и повышение венозного давления влечет за собой уменьшение разности давления в артериальной и венозной системах. При этом наблюдается уменьшение скорости кровотока в сосудах.

На величину сопротивления сосудов влияет ряд факторов: радиус сосудов, их длина, вязкость крови.

Линейная скорость кровотока - это путь, пройденный в единицу времени каждой частицей крови. Линейная скорость кровотока в отличие от объемной неодинакова в разных сосудистых областях. Линейная скорость движения крови в венах меньше, чем в артериях. Это связано с тем, что просвет вен больше просвета артериального русла. Линейная скорость кровотока наибольшая в артериях и наименьшая в капиллярах.

Следовательно, линейная скорость кровотока обратно пропорциональна суммарной площади поперечного сечения сосудов.

В потоке крови скорость отдельных частиц различна. В крупных сосудах линейная скорость максимальна для частиц, движущихся по оси сосуда, минимальна - для пристеночных слоев.

В состоянии относительного покоя организма линейная скорость кровотока в аорте составляет 0,5 м/с. В период двигательной активности организма она может достигать 2,5 м/с. По мере разветвления сосудов ток крови в каждой веточке замедляется. В капиллярах он равен 0,5 мм/с, что в 1000 раз меньше, чем в аорте. Замедление кровотока в капиллярах облегчает обмен веществ между тканями и кровью. В крупных венах линейная скорость тока крови увеличивается, так как уменьшается площадь сосудистого сечения. Однако она никогда не достигает скорости тока крови в аорте.

Величина кровотока в отдельных органах различна. Она зависит от кровоснабжения органа и уровня его активности

Депо крови. В условиях относительного покоя в сосудистой системе находится 60 70~/о крови. Это так называемая циркулирующая кровь. Другая часть крови (30 40%) содержится в специальных кровяных депо. Эта кровь получила название депонированной, или резервной. Таким образом, количество крови в сосудистом русле может быть увеличено за счет поступления ее из кровяных депо.

Различают депо крови трех видов. К первому виду относится селезенка, ко второму печень и легкие и к третьему тонкостенные вены, особенно вены брюшной полости, и подсосочковые венозные сплетения кожи. Из всех перечисленных депо крови истинным депо является селезенка. В селезенке вследствие особенностей ее строения действительно содержится часть крови, временно выключенной из общей циркуляции. В сосудах печени, легких, в венах брюшной полости и подсосочковых венозных сплетениях кожи вмещается большое количество крови. При сокращении сосудов указанных органов и сосудистых областей в общую циркуляцию поступает значительное количество крови.

Истинное депо крови . С. П. Боткин одним из первых определил значение селезенки как органа, где происходит депонирование крови. Наблюдая больного с заболеванием крови, С. П. Боткин обратил внимание на то, что при угнетенном состоянии психики у больного значительно увеличивалась в размерах селезенка. Напротив, психическое возбуждение больного сопровождалось существенным уменьшением размеров селезенки. В дальнейшем эти факты подтвердились и при обследовании других больных. Колебания размеров селезенки С. П. Боткин связывал с изменением содержания крови в органе.

Ученик И. М. Сеченова физиолог И. Р. Тарханов в опытах на животных показал, что раздражение электрическим током седалищного нерва или области продолговатого мозга при неповрежденных чревных нервах приводило к сокращению селезенки.

Английский физиолог Баркрофт в опытах на животных с выведенной из брюшиной полости и подшитой к коже селезенкой изучал динамику колебаний размеров и объема органа под влиянием ряда факторов. Баркрофт, в частности, обнаружил, что агрессивное состояние собаки, например при виде кошки, вызывало резкое сокращение селезенки.

У взрослого человека в селезенке содержится примерно 0,5 л крови. При возбуждении симпатической нервной системы происходит сокращение селезенки и кровь поступает в кровоток. При возбуждении блуждающих нервов селезенка, напротив, наполняется кровью.

Депо крови второго вида . Легкие и печень в своих сосудах вмещают большое количество крови.

У взрослого человека в сосудистой системе печени обнаруживается около 0,6 л крови. Сосудистое русло легких содержит от0,5 до 1,2 л крови.

Вены печени имеют «шлюзовой» механизм, представленный гладкой мускулатурой, волокна которой окружают начало печеночных вен. «Шлюзовой» механизм, также как и сосуды печени, иннервируется ветвями симпатических и блуждающих нервов. При возбуждении симпатических нервов, при увеличенном поступлении в кровоток адреналина происходит расслабление печеночных«шлюзов» и сокращение вен, в результате в общий кровоток поступает дополнительное количество крови. При возбуждении блуждающих нервов, при действии продуктов распада белка (пептоны, альбумозы), гистамина«шлюзы» печеночных вен закрываются, тонус вен понижается, просвет их увеличивается и создаются условия для наполнения сосудистой системы печени кровью.

Сосуды легких также иннервируются симпатическими и блуждающими нервами. Однако при возбуждении симпатических нервов сосуды легких расширяются и вмещают в себя большое количество крови. Биологическое значение такого влияния симпатической нервной системы на сосуды легких заключается в следующем. Например, при повышенной физической активности увеличивается потребность организма в кислороде. Расширение сосудов легких и увеличение притока крови к ним в этих условиях способствует лучшему удовлетворению возросших потребностей организма в кислороде и, в частности, скелетных мышц.

Депо крови третьего вида . В подсосочковых венозных сплетениях кожи вмещается до 1 л крови. Значительное количество крови содержится в венах, особенно брюшной полости. Все указанные сосуды иннервируются вегетативной нервной системой и функционируют так же, как сосуды селезенки и печени.

Кровь из депо поступает в общий круг кровообращения при возбуждении симпатической нервной системы (исключение составляют легкие), которое наблюдается при физической активности, эмоциях (гнев, страх), болевых раздражениях, кислородном голодании организма, кровопотерях, лихорадочных состояниях и т. д.

Депо крови наполняются при относительном покое организма, во время сна. В этом случае центральная нервная система оказывает влияние на депо крови через блуждающие нервы.

Перераспределение крови Общее количество крови в сосудистом русле составляет 5 6 л. Этот объем крови не может обеспечить увеличенные потребности органов в крови в период их активности. Вследствие этого перераспределение крови в сосудистом русле является необходимым условием, обеспечивающим выполнение органами и тканями их функций. Перераспределение крови в сосудистом русле приводит к усилению кровоснабжения одних органов и уменьшению других. Перераспределение крови происходит в основном между сосудами мышечной системы и внутренних органов, особенно органов брюшной полости и кожи.

Во время физической работы в скелетных мышцах функционирует больше открытых капилляров и значительно расширяются артериолы, что сопровождается увеличенным притоком крови. Возросшее количество крови в сосудах скелетных мышц обеспечивает их эффективную работу. Одновременно уменьшается кровоснабжение органов системы пищеварения.

Во время процесса пищеварения расширяются сосуды органов системы пищеварения, кровоснабжение их увеличивается, что создает оптимальные условия для осуществления физической и химической обработки содержимого желудочно-кишечного тракта. В этот период суживаются сосуды скелетных мышц и уменьшается их кровоснабжение.

Расширение сосудов кожи и увеличение притока крови к ним при высокой температуре окружающей среды сопровождается уменьшением кровоснабжения других органов, преимущественно системы пищеварения.

Перераспределение крови в сосудистом русле происходит и под действием силы тяжести, например сила тяжести облегчает движение крови по сосудам шеи. Ускорение, возникающее в современных летательных аппаратах (самолеты, космические корабли при взлете и т. д.), также вызывает перераспределение крови в различных сосудистых областях организма человека.

Расширение сосудов в работающих органах и тканях и сужение их в органах, находящихся в состоянии относительного физиологического покоя, является результатом воздействия на тонус сосудов нервных импульсов, идущих от сосудодвигательного центра.

Деятельность сердечно-сосудистой системы при физической работе .

Физическая работа значительно отражается на функции сердца, тонусе кровеносных сосудов, величине артериального давления и других показателях активности системы кровообращения. Возросшие при физической активности потребности организма, в частности в кислороде, удовлетворяются уже в так называемый предрабочий период. В этот период вид спортивного помещения или.производственная обстановка способствует подготовительной перестройке работы сердца и кровеносных сосудов, в основе которой лежат условные рефлексы.

Наблюдается условно-рефлекторное усиление работы сердца, поступление части депонированной крови в общий круг кровообращения, увеличение выброса адреналина из мозгового вещества надпочечников в сосудистое русло, Адреналин в свою очередь стимулирует работу сердца и суживает сосуды внутренних органов. Все это способствует нарастанию кровяного давления, увеличению кровотока через сердце, мозг и легкие.

Адреналин возбуждает симпатическую нервную систему, которая усиливает деятельность сердца, что также способствует повышению кровяною давления.

Во время физической активности кровоснабжение мышц возрастает в несколько раз. Причиной этого является интенсивный обмен веществ в мышцах, что обусловливает увеличение концентрации метаболитов (углекислый газ, молочная кислота и др.), которые расширяют артериолы и способствуют раскрытию капилляров. Однако увеличение просвета сосудов работающих мышц не сопровождается падением кровяного давления. Оно сохраняется на достигнутом высоком уровне, потому что в это время проявляются прессорные рефлексы в результате возбуждения механорецепторов области дуги аорты и каротидных синусов. Вследствие этого сохраняется усиленная деятельность сердца, а сосуды внутренних органов сужены, что и поддерживает артериальное давление на высоком уровне.

Скелетные мышцы при своем сокращении механически сдавливают тонкостенные вены, что способствует увеличенному венозному возврату крови к сердцу. Кроме того, повышение активности нейронов дыхательного центра в результате нарастания количества углекислого газа в организме приводит к увеличению глубины и частоты дыхательных движений. Это же в свою очередь увеличивает отрицательность внутригрудного давления важнейшего механизма, способствующего увеличению венозного возврата крови к сердцу. Таким образом, уже через 3 5 мин после начала физической работы системы кровообращения, дыхания и крови значительно усиливают свою деятельность, приспосабливая ее к новым условиям существования и удовлетворяя повышенные потребности организма в кислороде и кровоснабжении таких органов и тканей, как сердце, мозг, легкие и скелетные мышцы. Обнаружено, что при интенсивной физической работе минутный объем крови может составлять 30 л и более, это в 5 7 раз превышает минутный объем крови в состоянии относительного физиологического покоя. При этом систолический объем крови может быть равен 150 – 200 мл. 3начительно увеличивается частота сердечных сокращений. По некоторым данным, пульс может возрасти до 200 в 1 мин и более. Артериальное давление в плечевой артерии повышается до 26,7 кПа (200 мм рт. ст.). Скорость кругооборота крови может увеличиваться в 4 раза.

Давление крови в различных отделах сосудистого русла.

К р о в я н о е д а в л е н и е – давление крови на стенки кровеносных сосудов измеряется в Паскалях (1 Па = 1 Н/м2). Нормальное кровяное давление необходимо для циркуляции крови и надлежащего снабжения кровью органов и тканей, для образования тканевой жидкости в капиллярах, а также для осуществления процессов секреции и экскреции.

Величина кровяного давления зависит от трех основных факторов: частоты и силы сердечных сокращений; величины периферического сопротивления, т. е. тонуса стенок сосудов, главным образом артериол и капилляров; объема циркулирующей крови,

Различают артериальное, венозное и капиллярное давление крови. Величина артериального давления у здорового человека является довольно постоянной. Однако она всегда подвергается небольшим колебаниям в зависимости от фаз деятельности сердца и дыхания.

Различают систолическое, диастолическое, пульсовое и среднее артериальное давление.

С и с т о л и ч е с к о е (максимальное) давление отражает состояние миокарда левого желудочка сердца. Его величина 13,3 – 16,О кПа (100 – 120 мм рт. ст.) .

Д и а с т о л и ч е с к о е (минимальное) давление характеризует степень тонуса артериальных стенок. Оно равняется 7,8 -0,7 кПа (6О – 80 мм рт. ст.).

П у л ь с о в о е д а в л е н и е это разность между систолическим и диастолическим давлением. Пульсовое давление необходимо для открытия полулунных клапанов во время систолы желудочков. В норме пульсовое давление составляет 4,7 – 7,3 кПа (35 – 55 мм рт. ст.). Если систолическое давление станет равным диастолическому, движение крови будет невозможным и наступит смерть.

С р е д н е е артериальное давление равняется сумме диастолического и 1/3 пульсового давления. Среднее артериальное давление выражает энергию непрерывного движения крови и представляет собой постоянную величину для данного сосуда и организма.

На величину артериального давления оказывают влияние различные факторы: возраст, время суток, состояние организма, центральной нервной системы и т. д. У новорожденных величина максимального артериального давления составляет 5,3 кПа (40 мм рт. ст.), в возрасте 1 месяца – 10,7 кПа (80 мм рт. ст.), 10 – 14 лет – 13,3-14,7 кПа (100 – 110 мы рт. ст.), 20 – 40 лет – 14,7-17,3 кПа (110 — 130 мм рт. ст.). С возрастом максимальное давление увеличивается в большей степени, чем минимальное.

В течение суток наблюдается колебание величины артериального давления: днем оно выше, чем ночью.

Значительное повышение максимального артериального давления может наблюдаться при тяжелой физической нагрузке, во время спортивных состязаний и др. После прекращения работы или окончания соревнований артериальное давление быстро возвращается к исходным показателям, Повышение артериального давления называют гипертонией . Понижение артериального давления получило название гипотонии . Гипотония может наступить в результате отравления наркотиками, при сильных травмах, обширных ожогах, больших кровопотерях.

Методы измерения артериального давления. У животных артериальное давление измеряют бескровным и кровавым способом . В последнем случае обнажают одну из крупных артерий (сонная или бедренная). Делают надрез в стенке артерии, через который вводят стеклянную канюлю (трубочку). Канюлю при помощи лигатур укрепляют в сосуде и соединяют с одним концом ртутного манометра с помощью системы резиновых и стеклянных трубок, заполненных раствором, препятствующим свертыванию крови. На другом конце манометра опускают поплавок с писчиком. Колебания давления передаются через жидкость трубочек ртутному манометру и поплавку, движения которого регистрируются на поверхности барабана кимографа.

У человека артериальное давление определяют аускультативным методом по Короткову. Для этой цели необходимо иметь сфигмоманометр Рива-Роччи или сфигмотонометр (манометр мембранного типа). Сфигмоманометр состоит из ртутного манометра, широкого плоского резинового мешка-манжеты и нагнетательной резиновой груши, соединенных друг с другом резиновыми трубками. Артериальное давление у человека обычно измеряют в плечевой артерии. Резиновую манжету, нерастяжимую благодаря покрышке из парусины, обертывают вокруг плеча и застегивают. Затем с помощью груши в манжету нагнетают воздух. Манжета раздувается и сдавливает ткани плеча и плечевую артерию. Степень этого давления можно измерить по манометру. Воздух нагнетают до тех пор, пока не перестанет прощупываться пульс в плечевой артерии, что происходит при полном ее сжатии. Затем в области локтевого сгиба, т. е. ниже места пережатия, к плечевой артерии прикладывают фонендоскоп и начинают с помощью винта понемногу выпускать воздух из манжеты. Когда давление в манжете понизится настолько, что кровь при систоле оказывается способной его преодолеть, в плечевой артерии прослушиваются характерные звуки – тоны . Эти тоны обусловлены появлением тока крови при систоле и отсутствием его при диастоле. Показания манометра, которые соответствуют появлению тонов, характеризуют максимальное , или систолическое , давление в плечевой артерии. При дальнейшем понижении давления в манжете тоны сначала усиливаются, а затем затихают и перестают прослушиваться. Прекращение звуковых явлений свидетельствует о том, что теперь и во время диастолы кровь способна проходить по сосуду без помех. Прерывистое (турбулентное) течение крови превращается в непрерывное (ламинарное). Движение по сосудам в этом случае не сопровождается звуковыми явлениями, показания манометра, которые соответствуют моменту исчезновения тонов, характеризуют диастолическое, минимальное , давление в плечевой артерии.

Артериальный пульс -это периодические расширения и удлинения стенок артерий, обусловленные поступлением крови в аорту при систоле левого желудочка. Пульс характеризуется рядом качеств, которые определяются путем пальпации чаще всего лучевой артерии в нижней трети предплечья, где она расположена наиболее поверхностно.

Пальпаторно определяют следующие качества пульса: частоту – количество ударов в 1 мин, ритмичность -правильное чередование пульсовых ударов, наполнение -степень изменения объема артерии, устанавливаемая по силе пульсового удара, напряжение -характеризуется силой, которую надо приложить, чтобы сдавить артерию до полного исчезновения пульса.

Пальпацией определяют и состояние стенок артерий: после сдавливания артерии до исчезновения пульса; в случае склеротических изменений сосуда она ощущается как плотный тяж.

Возникшая пульсовая волна распространяется по артериям. По мере продвижения она ослабевает и затухает на уровне капилляров. Скорость распространения пульсовой волны в различных сосудах у одного и того же человека неодинакова, она больше в сосудах мышечного типа и меньше в эластических сосудах. Так, у людей молодого и пожилого возраста скорость распространения пульсовых колебаний в эластических сосудах лежит в пределах от 4,8 до 5,6 м/с, в крупных артериях мышечного типа -от 6,0 до 7,0 -7,5 м/с. Таким образом, скорость распространения пульсовой волны по артериям значительно больше, чем скорость движения крови по ним, которая не превышает 0,5 м/с. С возрастом, когда понижается эластичность сосудов, скорость распространения пульсовой волны увеличивается.

Для более детального изучения пульса производят его запись с помощью сфигмографа. Кривая, полученная при записи пульсовых колебаний, называется сфигмограммой .

На сфигмограмме аорты и крупных артерий различают восходящее колено -анакроту и нисходящее колено -катакроту . Возникновение анакроты объясняется поступлением новой порции крови в аорту в начале систолы левого желудочка. В результате расширяется стенка сосуда, при этом возникает пульсовая волна, которая распространяется по сосудам, и на сфигмограмме фиксируется подъем кривой. В конце систолы желудочка, когда давление в нем снижается, а стенки сосудов возвращаются в исходное состояние, на сфигмограмме появляется катакрота. Во время диастолы желудочков давление в их полости становится ниже, чем в артериальной системе, поэтому создаются условия для возвращения крови в желудочки. В результате этого давление в артериях падает, что отражается на пульсовой кривой в виде глубокой выемки -инцизуры . Однако на своем пути кровь встречает препятствие -полулунные клапаны. Кровь отталкивается от них и обусловливает появление вторичной волны повышения давления Это в свою очередь вызывает вторичное расширение стенок артерий, что фиксируется на сфигмограмме в виде дикротического подъема.

Физиология микроциркуляции

В сердечно-сосудистой системе центральным является микроциркуляторное звено, основной функцией которого является транскапиллярный обмен.

Микроциркуляторное звено сердечно-сосудистой системы представлено мелкими артериями, артериолами, метартериолами, капиллярами, венулами, мелкими венами и артериоловенулярными анастомозами. Артериоловенулярные анастомозы служат для уменьшения сопротивления току крови на уровне капиллярной сети. При открытии анастомозов увеличивается давление в венозном русле и ускоряется движение крови по венам.

Транскапиллярный обмен происходит в капиллярах. Он возможен благодаря особому строению капилляров, стенка которых обладает двусторонней проницаемостью. Проницаемость - активный процесс, который обеспечивает оптимальную среду для нормальной жизнедеятельности клеток организма.

Рассмотрим особенности строения важнейших представителей микроциркулярного русла - капилляров.

Капилляры открыты и изучены итальянским ученым Мальпиги (1861). Общее количество капилляров в системе сосудов большого круга кровообращения составляет около 2 млрд., протяженность их - 8000 км, площадь внутренней поверхности 25 м 2 . Поперечное сечение всего капиллярного русла в 500-600 раз больше поперечного сечения аорты.

Капилляры имеют форму шпильки, срезанной или полной восьмерки. В капилляре различают артериальное и венозное колено, а также вставочную часть. Длина капилляра равна 0,3-0,7 мм, диаметр - 8-10 мкм. Через просвет такого сосуда эритроциты проходят другза другом, несколько деформируясь. Скорость тока крови в капиллярах составляет 0,5-1 мм/с, что в 500-600 раз меньше скорости тока крови в аорте.

Стенка капилляров образована одним слоем эндоте-лиальных клеток, которые снаружи сосуда располагаются на тонкой соединительнотканной базальной мембране.

Существуют закрытые и открытые капилляры. Работающая мышца животного содержит в 30 раз больше капилляров, чем мышца, находящаяся в состоянии покоя.

Форма, размеры и количество капилляров в различных органах неодинаковы. В тканях органов, в которых наиболее интенсивно происходят обменные процессы, количество капилляров на 1 мм 2 поперечного сечения значительно больше, чем в органах, где метаболизм менее выражен. Так, в сердечной мышце на 1 мм 2 поперечного сечения приходится в 5-6 раз больше капилляров, чем в скелетной мышце.

Для выполнения капиллярами их функций (транскапиллярного обмена) имеет значение артериальное давление. В артериальном колене капилляра давление крови составляет 4,3 кПа (32 мм рт. ст.), в венозном - 2,0 кПа (15 мм рт. ст.). В капиллярах почечных клубочков давление достигает 9,3-12,0 кПа (70-90 мм рт. ст.); в капиллярах, оплетающих почечные канальцы,- 1,9- 2,4 кПа (14-18 мм рт. ст.). В капиллярах легких давление равняется 0,8 кПа (6 мм рт. ст.).

Таким образом, величина давления в капиллярах тесно связана с состоянием органа (покой, активность) и его функциями.

Кровообращение в капиллярах можно наблюдать под микроскопом в плавательной перепонке лапки лягушки. В капиллярах кровь движется прерывисто, что связано с изменением просвета артериол и прекапиллярных сфинктеров. Фазы сокращения и расслабления длятся от нескольких секунд до нескольких минут.

Активность микрососудов регулируется нервными и гуморальными механизмами. На артериолы главным образом воздействуют симпатические нервы, на прекапиллярные сфинктеры - гуморальные факторы (гистамин, серотонин и др.).

Особенности кроовотока в венах. Кровь из микроциркуляторного русла (венулы, мелкие вены) поступает в венозную систему. В венах давление крови низкое. Если в начале артериального русла давление крови равно 18,7 кПа (140 мм рт. ст.), то в венулах оно составляет 1,3-2,0 кПа (10-15 мм рт. ст). В конечной части венозного русла давление крови приближается к нулю и даже может быть ниже атмосферного давления.

Движению крови по венам способствует ряд факторов: работа сердца, клапанный аппарат вен, сокращение скелетных мышц, присасывающая функция грудной клетки.

Работа сердца создает разность давления крови в артериальной системе и правом предсердии. Это обеспечивает венозный возврат крови к сердцу. Наличие в венах клапанов способствует движению крови в одном направлении - к сердцу. Чередование сокращений и расслаблений мышц является важным фактором, способствующим движению крови по венам. При сокращении мышц тонкие стенки вен сжимаются, и кровь продвигается по направлению к сердцу. Расслабление скелетных мышц способствует поступлению крови из артериальной системы в вены. Такое нагнетающее действие мышц получило название мышечного насоса, который является помощником основного насоса - сердца. Движение крови по венам облегчается во время ходьбы, когда ритмически работает мышечный насос нижних конечностей.

Отрицательное внутригрудное давление, особенно в фазу вдоха, способствует венозному возврату крови к сердцу. Внутригрудное отрицательное давление вызывает расширение венозных сосудов области шеи и грудной полости, обладающих тонкими и податливыми стенками. Давление в венах понижается, что облегчает движение крови по направлению к сердцу.

Скорость тока крови в периферических венах составляет 5-14 см/с, полых венах - 20 см/с.

Иннервация кровеносных сосудов

Изучение вазомоторной иннервации было начато русским исследователем А. П. Вальтером, учеником Н. И. Пирогова, и французским физиологом Клодом Бернаром.

А. П. Вальтер (1842) изучал влияние раздражения и перерезки симпатических нервов на просвет кровеносных сосудов в плавательной перепонке лягушки. Наблюдая за просветом кровеносных сосудов под микроскопом, он установил, что симпатические нервы обладают способностью суживать сосуды.

Клод Бернар (1852) изучал влияние симпатических нервов на тонус сосудов уха кролика-альбиноса. Он обнаружил, что раздражение электрическим током симпатического нерва на шее у кролика закономерно сопровождается сужением сосудов: ухо животного становилось бледным и холодным. Перерезка симпатического нерва на шее приводила к расширению сосудов уха, которое становилось красным и теплым.

Современные данные также свидетельствуют о том, что симпатические нервы для сосудов являются вазоконстрикторами (суживают сосуды). Установлено, что даже в условиях полного покоя по вазоконстрикторным волокнам к сосудам непрерывно поступают нервные импульсы, которые поддерживают их тонус. Вследствие этого перерезка симпатических волокон сопровождается расширением сосудов.

Вазоконстрикторное влияние симпатических нервов не распространяется на сосуды головного мозга, легких, сердца и работающих мышц. При возбуждении симпатических нервов сосуды указанных органов и тканей расширяются.

Сосудорасширяющие нервы имеют несколько источников. Они входят в состав некоторых парасимпатических нервов, Сосудорасширяющие нервные волокна обнаружены в составе симпатических нервов и задних корешков спинного мозга.

Сосудорасширяющие волокна (вазодилататоры) парасимпатической природы. Впервые Клод Бернар установил наличие сосудорасширяющих нервных волокон в составе VII пары черепных нервов (лицевой нерв). При раздражении нервной веточки (барабанная струна) лицевого нерва он наблюдал расширение сосудов подчелюстной железы. В настоящее время известно, что и в составе других парасимпатических нервов имеются вазодилататорные нервные волокна. Например, сосудорасширяющие нервные волокна обнаружены в языкоглоточном (1Х пара черепных нервов), блуждающем (Х пара черепных нервов) и тазовом нервах.

Сосудорасширяющие волокна симпатической природы. Симпатические вазодилататорные волокна иннервируют сосуды скелетных мышц. Они обеспечивают высокий уровень кровотока в скелетной мускулатуре во время физической нагрузки и не участвуют в рефлекторной регуляции артериального давления.

Сосудорасширяющие волокна корешков спинного мозга. При раздражении периферических концов задних корешков спинного мозга, в состав которых входят чувствительные волокна, можно наблюдать расширение сосудов кожи.

Гуморальная регуляция тонуса сосудов

В регуляции тонуса сосудов участвуют также гуморальные вещества, которые могут воздействовать на сосудистую стенку как непосредственно, так и изменяя нервные влияния, Под действием гуморальных факторов просвет сосудов или увеличивается, или уменьшается, поэтому принято гуморальные факторы, оказывающие действие на тонус сосудов, делить на сосудосуживающие и сосудорасширяющие вещества.

Сосудосуживающие вещества . К этим гуморальным факторам относятся адреналин, норадреналин (гормоны мозгового вещества надпочечников), вазопрессин (гормон задней доли гипофиза), ангиотонин (гипертензин), образующийся из a-глобулина плазмы под влиянием ренина (протеолитический фермент почек), серотонин, биологически активное вещество, носителями которого являются тучные клетки соединительной ткани и тромбоциты.

Указанные гуморальные факторы преимущественно суживают артерии и капилляры.

Сосудорасширяющие вещества. К ним относятся гистамин, ацетилхолин, тканевые гормоны кинины, простагландины.

Гистамин продукт белкового происхождения, образуется в тучных клетках, базофилах, в стенке желудка, кишечника и т. д. Гистамин является активным вазодилататором, он расширяет мельчайшие сосуды артериолы и капилляры,

Ацетилхолин действует местно, расширяет мелкие артерии.

Главным представителем кининов является брадикинин. Он расширяет преимущественно мелкие артериальные сосуды и прекапиллярные сфинктеры, что способствует увеличению кровотока в органах.

Простагландины содержатся во всех органах и тканях человека. Некоторые из простагландинов дают выраженный сосудорасширяющий эффект, который проявляется местно.

Сосудорасширяющие свойства присущи и другим веществам, например молочной кислоте, ионам калия, магния и т. д.

Таким образом, просвет кровеносных сосудов, их тонус регулируется нервной системой и гуморальными факторами, к которым относится большая группа биологически активных веществ с выраженным вазоконстрикторным или вазодилататорным действием.

Сосудодвигательный центр, его локализация и значение

Регуляция тонуса сосудов осуществляется с помощью сложного механизма, который включает в себя нервный и гуморальный компоненты.

В нервной регуляции тонуса сосудов принимают участие спинной, продолговатый, средний и промежуточный мозг, кора головного мозга.

Спинной мозг . Русский исследователь В. Ф. Овсянников (1870 1871) одним из первых указал на роль спинного мозга в регуляции тонуса сосудов.

После отделения у кроликов спинного мозга от продолговатого путем поперечной перерезки на протяжении длительного времени (недели) наблюдалось резкое падение величины артериального давления в результате понижения тонуса сосудов.

Нормализация артериального давления у «спинальных» животных осуществляется за счет нейронов, расположенных в боковых рогах грудных и поясничных сегментов спинного мозга и дающих начало симпатическим нервам, которые связаны с сосудами соответствующих участков тела. Эти нервные клетки выполняют функцию спинальных сосудодвигательных центров и принимают участие в регуляции тонуса сосудов.

Продолговатый мозг . В. Ф. Овсянников на основании результатов опытов с высокой поперечной перерезкой спинного мозга у животных пришел к заключению, что в продолговатом мозге локализуется сосудодвигательный центр. Этот центр регулирует деятельность спинальных сосудодвигательных центров, которые находятся в прямой зависимости от его активности.

Сосудодвигательный центр это парное образование, которое располагается на дне ромбовидной ямки и занимает нижнюю и среднюю ее части. Показано, что он состоит из двух отличных в функциональном отношении областей прессорной и депрессорной. Возбуждение нейронов прессорной области приводит к повышению тонуса сосудов и уменьшению их просвета, возбуждение нейронов депрессорной зоны обусловливает понижение тонуса сосудов и увеличение их просвета.

Такое расположение не строго специфично, кроме того, нейронов, обеспечивающих при своем возбуждении сосудосуживающие реакции больше, чем нейронов, обусловливающих при своей активности расширение сосудов. Наконец, обнаружено, что нейроны сосудодвигательного центра располагаются среди нервных структур ретикулярной формации продолговатого мозга.

Средний мозг и гипоталамическая область . Раздражение нейронов среднего мозга, по данным ранних работ В. Я. Данилевского (1875), сопровождается повышением тонуса сосудов, приводящим к возрастанию артериального давления.

Установлено, что раздражение передних отделов гипоталамической области приводит к понижению тонуса сосудов, увеличению их просвета и падению артериального давления. Стимуляция нейронов задних отделов гипоталамуса, наоборот, сопровождается повышением тонуса сосудов, уменьшением их просвета и увеличением артериального давления.

Влияние гипоталамической области на тонус сосудов осуществляется главным образом через сосудодвигательный центр продолговатого мозга. Однако часть нервных волокон от гипоталамической области идет непосредственно к спинальным нейронам, минуя сосудодвигательный центр продолговатого мозга.

Кора головного мозга. Роль этого отдела центральной нервной системы в регуляции тонуса сосудов была доказана в опытах с прямым раздражением различных зон коры головного мозга, в экспериментах с удалением (экстирпацией) отдельных ее участков и методом условных рефлексов.

Опыты с раздражением нейронов коры головного мозга и с удалением ее различных участков позволили сделать определенные выводы. Кора головного мозга обладает способностью как тормозить, так и усиливать активность нейронов подкорковых образований, имеющих отношение к регуляции тонуса сосудов, а также нервных клеток сосудодвигательного центра продолговатого мозга. Наибольшее значение в регуляции тонуса сосудов имеют передние отделы коры головного мозга: моторная, премоторная и орбитальная.

Условнорефлекторные влилния на тонус сосудов

Классическим приемом, который позволяет судить о кортикальных влияниях на функции организма, является метод условных рефлексов.

В лаборатории И. П, Павлова его учениками (И, С. Цитович) впервые были образованы условные сосудистые рефлексы у человека. В качестве безусловного раздражителя использовали температурный фактор (тепло и холод), болевое воздействие, фармакологические вещества, изменяющие тонус сосудов (адреналин). Условным сигналом являлись звук трубы, вспышка света и т. д.

Изменение тонуса сосудов регистрировали с помощью так называемого плетизмографического метода. Этот метод позволяет фиксировать колебания объема органа (например, верхней конечности), которые связаны со сдвигами в его кровенаполнении и, следовательно, обусловлены изменениями в просвете кровеносных сосудов.

В опытах было установлено, что условные сосудистые рефлексы у человека и животных образуются срявнительно быстро. Сосудосуживающий условный рефлекс может быть получен после 2 3 сочетаний условного сигнала с безусловным раздражителем, сосудорасширяющий после 20 30 и более сочетаний. Условные рефлексы первого вида хорошо сохраняются, второго вида оказались нестойкими и непостоянными по величине.

Таким образом, по своему функциональному значению и механизму действия на тонус сосудов отдельные уровни центральной нервной системы неравнозначны.

Сосудодвигательный центр продолговатого мозга осуществляет регуляцию тонуса сосудов, воздействуя на спинальные сосудодвигательные центры. Кора головного мозга и гипоталамическая область оказывают опосредованное влияние на тонус сосудов, изменяя возбудимость нейронов продолговатого и спинного мозга.

Значение сосудодвигательного центра . Нейроны сосудодвигательного центра за счет своей активности осуществляют регуляцию тонуса сосудов, поддерживают нормальную величину кровяного давления, обеспечивают движение крови по сосудистой системе и ее перераспределение в организме по отдельным областям органам и тканям, влияют на процессы терморегуляции, изменяя просвет сосудов.

Тонус сосудодвигательного центра продолговатого мозга . Нейроны сосудодвигательного центра находятся в состоянии постоянного тонического возбуждения, которое передается на нейроны боковых рогов спинного мозга симпатической нервной системы. Отсюда возбуждение по симпатическим нервам поступает к сосудам и обусловливает их постоянное тоническое напряжение. Тонус сосудодвигательного центра зависит от нервных импульсов, постоянно идущих к нему от рецепторов различных рефлексогенных зон,

В настоящее время установлено наличие многочисленных рецепторов в эндокарде, миокарде, перикарде, Во время работы сердца создаются условия для возбуждения этих рецепторов. Нервные импульсы, возникшие в рецепторах, поступают к нейронам сосудодвигательного центра и поддерживают их тоническое состояние.

Нервные импульсы идут и от рецепторов рефлексогенкых зон сосудистой системы (область дуги аорты, каротидные синусы, коронарные сосуды, рецепторная зона правого предсердия, сосуды малого круга кровообращения, брюшной полости и т. д.), обеспечивая тоническую активность нейронов сосудодвигательного центра.

Возбуждение самых разнообразных экстеро и интерорецепторов различных органов и тканей также способствует поддержанию тонуса сосудодвигательного центра.

Важную роль в сохранении тонуса сосудодвигательного центра играет возбуждение, поступающее от коры больших полушарий и ретикулярной формации ствола мозга. Наконец, постоянный тонус сосудодвигательного центра обеспечивается воздействием различных гуморальных факторов (углекислый газ, адреналин и др.). Регуляция активности нейронов сосудодвигательного центра осуществляется за счет нервных импульсов, идущих от коры головного мозга, гипоталамической области, ретикулярной формации ствола мозга, а также афферентных импульсов, поступающих с различных рецепторов. Особенно вакная роль в регуляции активности нейронов сосудодвигательного центра принадлежит аортальной и каротидной рефлексогенным зонам.

Рецепторная зона дуги аорты представлена чувствительными нервными окончаниями депрессорного нерва, являющегося веточкой блуждающего нерва. Значение депрессорного нерва в регуляции деятельности сосудодвигательного центра впервые была доказана отечественным физиологом И. Ф. Ционом и немецким ученым Людвигом (1866). В области каротидных синусов располагаются механорецепторы, от которых берет начало нерв, изученный и описанный немецкими исследователями Герингом, Геймансом и другими (1919 1924). Этот нерв получил название синусового нерва, или нерва Геринга. Синусовый нерв имеет анатомические связи с языкоглоточным (1Х пара черепных нервов) и симпатическим нервами.

Естестненным (адекватным) раздражителем механорецепторов является их растяжение, которое наблюдается при изменении кровяного давления. Механорецепторы чрезвычайно чувствительны к колебаниям давления. Особенно это относится к рецепторам каротидных синусов, которые возбуждаются при изменении давления на 0,13 0,26 кПа (1 2 мм рт. ст.).

Рефлекторная регуляция активности нейронов сосудодвигательного центра , осуществляемая с дуги аорты и каротидных синусов, однотипна, поэтому ее можно рассмотреть на примере одной из рефлексогснных зон.

При повышении артериального давления в сосудистой системе возбуждаются механорецепторы области дуги аорты. Нервные импульсы от рецепторов по депрессорному нерву и блуждающим нервам направляются в продолговатый мозг к сосудолвигатсльному центру. Под влиянием этих импульсов снижается активность иейронов прессорной зоны сосудодвигательного центра, что приводит к увеличению просвета сосудов и снижению артериального давления. Одновременно увеличивается активность ядер блуждающих нервов и уменьшается возбудимость нейронов дыхательного центра. Ослабление силы и уменьшение частоты сердечных сокращений под влиянием блуждающих нервов, глубины и частоты дыхательных движений в результате уменьшения активности нейронов дыхательного центра также способствует снижению артериального давления.

При уменьшении артериального давления наблюдаются противоположные изменения активности нейронов сосудодвигательного центра, ядер блуждающих нервов, нервных клеток дыхательного центра, приводящие к нормализации артериального давления.

В восходящей части аорты в ее наружном слое располагается аортальное тельце, а в области разветвления сонной артерии каротидное тельце, в которых локализованы рецепторы, чувствительные к изменениям химического состава крови, особенно к сдвигам в количестве углекислого газа и кислорода. Установлено, что при повышении концентрации углекислого газа и понижении содержания кислорода в крови происходит возбуждение этих хеморецепторов, которое обусловливает увеличение активности нейронов прессорной зоны сосудодвигательного центра. Это приводит к уменьшению просвета кровеносных сосудов и повышению артериального давления. Одновременно рефлекторно увеличивается глубина и частота дыхательных движений в результате повышения активности нейронов дыхательного центра.

Рефлекторные изменения давления, возникающие в результате возбуждения рецепторов различных сосудистых областей, получили название с о б с т в е н н ы х р е фл е к с о в с ер де ч н ос осу д ис т ой с ис те мы. К ним, в частности, относятся рассмотренные рефлексы, проявляющиеся при возбуждении рецепторов области дуги аорты и каротидных синусов.

Рефлекторные изменения артериального давления, обусловленные возбуждением рецепторов, не локализованных в сердечнососудистой системе, получили название с о п р я ж е н н ы х р е ф л е к с о в. Эти рефлексы возникают, например, при возбуждении болевых и температурных рецепторов кожи, проприорецепторов мышц при их сокращении и т. д,

Деятельность сосудодвигательного центра за счет регуляторных механизмов (нервных и гуморальных) приспосабливает тонус сосудов и, следовательно, кровоснабжение органов и тканей к условиям существования организма животных и человека. По современным представлениям, центры, регулирующие деятельность сердца и сосудодвигательный центр, функционально объединены в сердечнососудистый центр, который управляет функциями кровообращения.

Лимфа и лимфообращение

Состав и свойства лимфы . Лимфатическая система является составной частью микроциркуляторного русла. Лимфатическая система состоит из капилляров, сосудов, лимфатических узлов, грудного и правого лимфатического протоков, из которых лимфа поступает в венозную систему.

Л и м ф а т и ч е с к и е к а п и л л я р ы являются начальным звеном лимфатической системы. Они входят в состав всех тканей и органов. Лимфатические капилляры имеют ряд особенностей. Они не открываются в межклеточные пространства (оканчиваются слепо), их стенки тоньше, податливее и обладают большей проницаемостью по сравнению с кровеносными капиллярами. Лимфатические капилляры имеют больший просвет, чем кровеносные капилляры. При полном заполнении лимфой лимфатических капилляров диаметр их равен в среднем 15 75 мкм. Длина их может достигать 100 150 мкм. В лимфатических капиллярах имеются клапаны, представляющие собой парные, расположенные друг против друга карманообразные складки внутренней оболочки сосуда. Клапанный аппарат обеспечивает движение лимфы в одном направлении к устью лимфатической системы (грудному и правому лимфатическому протокам). Например, скелетные мышцы при сокращении механически сдавливают стенки капилляров и лимфа продвигается по направлению к венозным сосудам. Обратное ее движение невозможно благодаря наличию клапанного аппарата.

Лимфатические капилляры переходят в лимфатические сосуды, которые заканчиваются правым лимфатическим и грудным протоками. В лимфатических сосудах имеются мышечные элементы, иннервируемые симпатическими и парасимпатическими нервами. Благодаря этому лимфатические сосуды обладают способностью активно сокращаться.

Лимфа из грудного протока поступает в венозную систему в области венозного угла, образуемого левой внутренней яремной и подключичной венами. Из правого лимфатического протока лимфа поступает в венозную систему в области венозного угла, образуемого правой внутренней яремной и подключичной венами. Кроме того, по ходу лимфатических сосудов обнаруживаются лимфовенозные анастомозы, которые также обеспечивают поступление лимфы в венозную кровь. У взрослого человека в условиях относительного покоя из грудного протока в подключичную вену ежеминутно поступает около 1 мл лимфы, в сутки от 1,2 до 1,6 л.

Л и м ф а это жидкость, содержащаяся в лимфатических капиллярах и сосудах. Скорость движения лимфы по лимфатическим сосудам составляет 0,4 0,5 м/с. По химическому составу лимфа и плазма крови очень близки. Основное отличие заключается в том, что в лимфе содержится значительно меньше белка, чем в плазме крови. В лимфе имеются белки протромбин, фибриноген, поэтому она может свертываться. Однако эта способность у лимфы выражена в меньшей степени, чему крови. В 1 мм 3 лимфы обнаруживается 2-20 тыс. лимфоцитов. У взрослого человека за сутки из грудного протока в кровь венозной системы поступает более 35 млрд. лимфоцитарных клеток.

В период пищеварения в лимфе брыжеечных сосудов резко нарастает количество питательных веществ, особенно жира, что придает ей молочно белый цвет. Через 6 ч после приема пищи содержание жира в лимфе грудного протока может возрастать во много раз по сравнению с исходными его величинами. Установлено, что состав лимфы отражает интенсивность обменных процессов, протекающих в органах и тканях. Переход различных веществ из крови в лимфу зависит от их диффузионной способности, скорости поступления в сосудистое русло и особенностей проницаемости стенок кровеносных капилляров. Легко переходят в лимфу яды и токсины, главным образом бактериальные.

Образование лимфы . Источником лимфы является тканевая жидкость, поэтому необходимо рассмотреть факторы, способствующие ее образованию. Тканевая жидкость образуется из крови в мельчайших кровеносных сосудах капиллярах. Она заполняет межклеточные пространства всех тканей. Тканевая жидкость является промежуточной средой между кровью и клетками организма. Через тканевую жидкость клетки получают все необходимые для их жизнедеятельности питательные вещества и кислород и в нее же выделяют продукты обмена веществ, в том числе углекислый газ.

Движение лимфы . На движение лимфы по сосудам лимфатической системы оказывает влияние ряд факторов. Постоянный ток лимфы обеспечивается непрерывным образованием тканевой жидкости и переходом ее из межтканевых пространств в лимфатические сосуды. Существенное значение для движения лимфы имеет активность органов и сократительная способность лимфатических сосудов.

К вспомогательным факторам, способствующим движению лимфы, относятся: сократительная деятельность поперечнополосатых и гладких мышц, отрицательное давление в крупных венах и грудной полости, увеличение объема грудной клетки при вдохе, что обусловливает присасывание лимфы из лимфатических сосудов.

Лимфатические узлы

Лимфа в своем движении от капилляров к центральным сосудам и протокам проходит через один или несколько лимфатических узлов. У взрослого человека имеется 500 1000 лимфатических узлов различных размеров от булавочной головки до мелкого зерна фасоли. Лимфатические узлы в значительных количествах располагаются под углом нижней челюсти, в подмышечной впадине, на локтевом сгибе, в брюшной полости, тазовой области, подколенной ямке и т. д. В лимфатический узел входит несколько лимфатических сосудов, выходит же один, по которому оттекает лимфа от узла.

В лимфатических узлах также обнаружены мышечные элементы, иннервируемые симпатическими и парасимпатическими нервами.

Лимфатические узлы выполняют ряд важных функций: гемопоэтическую, иммунопоэтическую, защитно-фильтрационную, обменную и резервуарную.

Гемопоэтическая функция . В лимфатических узлах образуются малые и средние по величине лимфоциты, которые поступают с током лимфы в правый лимфатический и грудной протоки, а затем в кровь. Доказательством образования лимфоцитов в лимфатических узлах является то, что количество лимфоцитов в лимфе, оттекающей от узла, значительно больше, чем в притекающей.

Иммунопоэтическая функция. В лимфатических узлах образуются клеточные элементы (плазматические клетки, иммуноциты) и белковые вещества глобулиновой природы (антитела), имеющие непосредственное отношение к формированию иммунитета в организме человека. Кроме того, в лимфатических узлах продуцируются клетки гуморального (система В-лимфоцитов) и клеточного(система Т-лимфоцитов) иммуйитета.

Защитно-фильтрационная функция . Лимфатические узлы это своеобразные биологические фильтры, которые задерживают поступление в лимфу и кровь инородных частиц, бактерий, токсинов, чужеродных белков и клеток. Так, например, при пропускании сыворотки, насыщенной стрептококками, через лимфатические узлы подколенной ямки было обнаружено, что 99% микробов задерживалось в узлах. Установлено также, что вирусы в лимфатических узлах связываются лимфоцитами и другими клетками. Выполнение лимфатическими узлами защитно-фильтрационной функции сопровождается усилением образования лимфоцитов.

Обменная функция . Лимфатические узлы принимают активное участие в обмене белков, жиров, витаминов и других питательных веществ, поступающих в организм.

Резервуарная функция. Лимфатические узлы совместно с лимфатическими сосудами являются депо для лимфы. Они также участвуют в перераспределении жидкости между кровью и лимфой.

Таким образом, лимфа и лимфатические узлы выполняют в организме животных и человека ряд важнейших функций. Лимфатическая система в целом обеспечивает отток лимфы от тканей и поступление ее в сосудистое русло. При закупорке или сдавлении лимфатических сосудов нарушается отток лимфы от органов, что приводит к отеку тканей в результате переполнения межтканевых пространств жидкостью.

Система кровообращения состоит из четырех компонентов: сердца, кровеносных сосудов, органов – депо крови, механизмов регуляции.

Система кровообращения является составляющим компонентом сердечно-сосудистой системы, который, помимо системы кровообращения, включает в себя и систему лимфообразования. Благодаря ее наличию обеспечивается постоянное непрерывное движение крови по сосудам, на что влияет ряд факторов:

1) работа сердца как насоса;

2) разность давления в сердечно-сосудистой системе;

3) замкнутость;

4) клапанный аппарат сердца и вен, что препятствует обратному току крови;

5) эластичность сосудистой стенки, особенно крупных артерий, за счет чего происходит превращение пульсирующего выброса крови из сердца в непрерывный ток;

6) отрицательное внутриплевральное давление (присасывает кровь и облегчает ее венозный возврат к сердцу);

7) сила тяжести крови;

8) мышечная активность (сокращение скелетных мышц обеспечивает проталкивание крови, при этом увеличиваются частота и глубина дыхания, что приводит к понижению давления в плевральной полости, повышению активности проприорецепторов, вызывая возбуждение в ЦНС и увеличение силы и частоты сердечных сокращений).

В организме человека кровь циркулирует по двум кругам кровообращения – большому и малому, которые вместе с сердцем образуют замкнутую систему.

Малый круг кровообращения был впервые описан М. Серветом в 1553 г. Он начинается в правом желудочке и продолжается в легочный ствол, переходит в легкие, где осуществляется газообмен, затем по легочным венам кровь поступает в левое предсердие. Кровь обогащается кислородом. Из левого предсердия артериальная кровь, насыщенная кислородом, поступает в левый желудочек, откуда начинается большой круг . Он был открыт в 1685 г. У. Гарвеем. Кровь, содержащая кислород, по аорте направляется по менее крупным сосудам к тканям и органам, где осуществляется газообмен. В результате по системе полых вен (верхней и нижней), которые впадают в правое предсердие, течет венозная кровь с низким содержанием кислорода.

Особенностью является тот факт, что в большом круге артериальная кровь движется по артериям, а венозная – по венам. В малом круге, наоборот, по артериям течет венозная кровь, а по венам – артериальная.

2. Морфофункциональные особенности сердца

Сердце является четырехкамерным органом, состоящим из двух предсердий, двух желудочков и двух ушек предсердий. Именно с сокращения предсердий и начинается работа сердца. Масса сердца у взрослого человека составляет 0,04 % от веса тела. Его стенка образована тремя слоями – эндокардом, миокардом и эпикардом. Эндокард состоит из соединительной ткани и обеспечивает органу несмачиваемость стенки, что облегчает гемодинамику. Миокард образован поперечно-полосатым мышечным волокном, наибольшая толщина которого в области левого желудочка, а наименьшая – в предсердии. Эпикард является висцеральным листком серозного перикарда, под которым располагаются кровеносные сосуды и нервные волокна. Снаружи сердца располагается перикард – околосердечная сумка. Он состоит из двух слоев – серозного и фиброзного. Серозный слой образован висцеральным и париетальным листками. Париетальный слой соединяется с фиброзным слоем и образует околосердечную сумку. Между эпикардом и париетальным листком имеется полость, которая в норме должна быть заполнена серозной жидкостью для уменьшения трения. Функции перикарда:

1) защита от механических воздействий;

2) предотвращение перерастяжения;

3) основа для крупных кровеносных сосудов.

Сердце вертикальной перегородкой делится на правую и левую половины, которые у взрослого человека в норме не сообщаются между собой. Горизонтальная перегородка образована фиброзными волокнами и делит сердце на предсердие и желудочки, которые соединяются за счет атриовентрикулярной пластинки. В сердце находится два вида клапанов – створчатые и полулунные. Клапан – дубликатура эндокарда, в слоях которого находятся соединительная ткань, мышечные элементы, кровеносные сосуды и нервные волокна.

Створчатые клапаны располагаются между предсердием и желудочком, причем в левой половине – три створки, а в правой – две. Полулунные клапаны находятся в месте выхода из желудочков кровеносных сосудов – аорты и легочного ствола. Они снабжены кармашками, которые при заполнении кровью закрываются. Работа клапанов пассивная, находится под влиянием разности давления.

Цикл сердечной деятельности состоит из систолы и диастолы. Систола – сокращение, которое длится 0,1–0,16 с в предсердии и 0,3–0,36 с в желудочке. Систола предсердий слабее, чем систола желудочков. Диастола – расслабление, у предсердий занимает 0,7–0,76 с, у желудочков – 0,47-0,56 с. Продолжительность сердечного цикла составляет 0,8–0,86 с и зависит от частоты сокращений. Время, в течение которого предсердия и желудочки находятся в состоянии покоя, называется общей паузой в деятельности сердца. Она длится примерно 0,4 с. В течение этого времени сердце отдыхает, а его камеры частично наполняются кровью. Систола и диастола – сложные фазы и состоят из нескольких периодов. В систоле различают два периода – напряжения и изгнания крови, включающие в себя:

1) фазу асинхронного сокращения – 0,05 с;

2) фазу изометрического сокращения – 0,03 с;

3) фазу быстрого изгнания крови – 0,12 с;

4) фазу медленного изгнания крови – 0,13 с.

Диастола продолжается около 0,47 с и состоит из трех периодов:

1) протодиастолического – 0,04 с;

2) изометрического – 0,08 с;

3) периода наполнения, в котором выделяют фазу быстрого изгнания крови – 0,08 с, фазу медленного изгнания крови – 0,17 с, время пресистолы – наполнение желудочков кровью – 0,1 с.

На продолжительность сердечного цикла влияют частота сердечных сокращений, возраст и пол.

3. Физиология миокарда. Проводящая система миокарда. Свойства атипического миокарда

Миокард представлен поперечно-полосатой мышечной тканью, состоящей из отдельных клеток – кардиомиоцитов, соединенных между собой с помощью нексусов, и образующих мышечное волокно миокарда. Таким образом, оно не имеет анатомической целостности, но функционирует как синцитий. Это связано с наличием нексусов, обеспечивающих быстрое проведение возбуждения с одной клетки на остальные. По особенностям функционирования выделяют два вида мышц: рабочий миокард и атипическую мускулатуру.

Рабочий миокард образован мышечными волокнами с хорошо развитой поперечно-полосатой исчерченностью. Рабочий миокард обладает рядом физиологических свойств:

1) возбудимостью;

2) проводимостью;

3) низкой лабильностью;

4) сократимостью;

5) рефрактерностью.

Возбудимость – это способность поперечно-полосатой мышцы отвечать на действие нервных импульсов. Она меньше, чем у поперечно-полосатых скелетных мышц. Клетки рабочего миокарда имеют большую величину мембранного потенциала и за счет этого реагируют только на сильное раздражение.

За счет низкой скорости проведения возбуждения обеспечивается попеременное сокращение предсердий и желудочков.

Рефрактерный период довольно длинный и связан с периодом действия. Сокращаться сердце может по типу одиночного мышечного сокращения (из-за длительного рефрактерного периода) и по закону «все или ничего».

Атипические мышечные волокна обладают слабовыраженными свойствами сокращения и имеют достаточно высокий уровень обменных процессов. Это связано с наличием митохондрий, выполняющих функцию, близкую к функции нервной ткани, т. е. обеспечивает генерацию и проведение нервных импульсов. Атипический миокард образует проводящую систему сердца. Физиологические свойства атипического миокарда:

1) возбудимость ниже, чем у скелетных мышц, но выше, чем у клеток сократительного миокарда, поэтому именно здесь происходит генерация нервных импульсов;

2) проводимость меньше, чем у скелетных мышц, но выше, чем у сократительного миокарда;

3) рефрактерный период довольно длинный и связан с возникновением потенциала действия и ионами кальция;

4) низкая лабильность;

5) низкая способность к сократимости;

6) автоматия (способность клеток самостоятельно генерировать нервный импульс).

Атипические мышцы образуют в сердце узлы и пучки, которые объединены в проводящую систему . Она включает в себя:

1) синоатриальный узел или Киса-Флека (расположен на задней правой стенке, на границе между верхней и нижней полыми венами);

2) атриовентрикулярный узел (лежит в нижней части межпредсердной перегородки под эндокардом правого предсердия, он посылает импульсы к желудочкам);

3) пучок Гиса (идет через пердсердно-желудочную перегородку и продолжается в желудочке в виде двух ножек – правой и левой);

4) волокна Пуркинье (являются разветвлениями ножек пучка Гиса, которые отдают свои ветви к кардиомиоцитам).

Также имеются дополнительные структуры:

1) пучки Кента (начинаются от предсердных трактов и идут по латеральному краю сердца, соединяя предсердие и желудочки и минуя атриовентрикулярные пути);

2) пучок Мейгайля (располагается ниже атриовентрикулярного узла и передает информацию в желудочки в обход пуков Гиса).

Эти дополнительные тракты обеспечивают передачу импульсов при выключении атриовентрикулярного узла, т. е. являются причиной излишней информации при патологии и могут вызвать внеочередное сокращение сердца – экстрасистолу.

Таким образом, за счет наличия двух видов тканей сердце обладает двумя главными физиологическими особенностями – длительным рефрактерным периодом и автоматией.

4. Автоматия сердца

Автоматия – это способность сердца сокращаться под влиянием импульсов, возникающих в нем самом. Обнаружено, что в клетках атипического миокарда могут генерироваться нервные импульсы. У здорового человека это происходит в области синоатриального узла, так как эти клетки отличаются от других структур по строению и свойствам. Они имеют веретеновидную форму, расположены группами и окружены общей базальной мембраной. Эти клетки называются водителями ритма первого порядка, или пейсмекерами. В них с высокой скоростью идут обменные процессы, поэтому метаболиты не успевают выноситься и накапливаются в межклеточной жидкости. Также характерными свойствами являются низкая величина мембранного потенциала и высокая проницаемость для ионов Na и Ca. Отмечена довольно низкая активность работы натрий-калиевого насоса, что обусловлено разностью концентрации Na и K.

Автоматия возникает в фазу диастолы и проявляется движением ионов Na внутрь клетки. При этом величина мембранного потенциала уменьшается и стремится к критическому уровню деполяризации – наступает медленная спонтанная диастолическая деполяризация, сопровождающаяся уменьшением заряда мембраны. В фазу быстрой деполяризации возникает открытие каналов для ионов Na и Ca, и они начинают свое движение внутрь клетки. В результате заряд мембраны уменьшается до нуля и изменяется на противоположный, достигая +20–30 мВ. Движение Na происходит до достижения электрохимического равновесия по ионам N a, затем начинается фаза плато. В фазу плато продолжается поступление в клетку ионов Ca. В это время сердечная ткань невозбудима. По достижении электрохимического равновесия по ионам Ca заканчивается фаза плато и наступает период реполяризации – возвращения заряда мембраны к исходному уровню.

Потенциал действия синоатриального узла отличается меньшей амплитудой и составляет ±70–90 мВ, а обычный потенциал ровняется ± 120–130 мВ.

В норме потенциалы возникают в синоатриальном узле за счет наличия клеток – водителей ритма первого порядка. Но другие отделы сердца в определенных условиях также способны генерировать нервный импульс. Это происходит при выключении синоатриального узла и при включении дополнительного раздражения.

При выключении из работы синоатриального узла наблюдается генерация нервных импульсов с частотой 50–60 раз в минуту в атриовентрикулярном узле – водителе ритма второго порядка. При нарушении в атриовентрикулярном узле при дополнительном раздражении возникает возбуждение в клетках пучка Гиса с частотой 30–40 раз в минуту – водитель ритма третьего порядка.

Градиент автоматии – это уменьшение способности к автоматии по мере удаления от синоатриального узла.

5. Энергетическое обеспечение миокарда

Для работы сердца как насоса необходимо достаточное количество энергии. Процесс обеспечения энергией складывается из трех этапов:

1) образования;

2) транспорта;

3) потребления.

Образование энергии происходит в митохондриях в виде аденозинтрифосфата (АТФ) в ходе аэробной реакции при окислении жирный кислот (в основном олеиновой и пальмитиновой). В ходе этого процесса образуется 140 молекул АТФ. Поступление энергии может происходить и за счет окисления глюкозы. Но это энергетически менее выгодно, так как при разложении 1 молекулы глюкозы образуется 30–35 молекул АТФ. При нарушении кровоснабжения сердца аэробные процессы становятся невозможными из-за отсутствия кислорода, и активируются анаэробные реакции. В этом случае из 1 молекулы глюкозы поступает 2 молекулы АТФ. Это приводит к появлению сердечной недостаточности.

Образовавшаяся энергия транспортируется из митохондрий по миофибриллам и имеет ряд особенностей:

1) осуществляется в виде креатинфосфотрансферазы;

2) для ее транспорта необходимо наличие двух ферментов -

АТФ-АДФ-трансферазы и креатинфосфокиназы

АТФ путем активного транспорта при участии фермента АТФ-АДФ-трансферазы переносится на наружную поверхность мембраны митохондрий и с помощью активного центра креатинфосфокиназы и ионов Mg доставляются на креатин с образованием АДФ и креатинфосфата. АДФ поступает на активный центр транслоказы и закачивается внутрь митохондрий, где подвергается рефосфорилированию. Креатинфосфат направляется к мышечным белкам с током цитоплазмы. Здесь также имеется фермент креатинфосфооксидаза, который обеспечивает образование АТФ и креатина. Креатин с током цитоплазмы подходит к мембране митохондрий и стимулирует процесс синтеза АТФ.

В итоге 70 % образовавшейся энергии расходуется на сокращении и расслабление мышц, 15 % – на работы кальциевого насоса, 10 % поступает на работу натрий-калиевого насоса, 5 % идет на синтетические реакции.

6. Коронарный кровоток, его особенности

Для полноценной работы миокарда необходимо достаточное поступление кислорода, которое обеспечивают коронарные артерии. Они начинаются у основания дуги аорты. Правая коронарная артерия кровоснабжает большую часть правого желудочка, межжелудочковую перегородку, заднюю стенку левого желудочка, остальные отделы снабжает левая коронарная артерия. Коронарные артерии располагаются в борозде между предсердием и желудочком и образуют многочисленные ответвления. Артерии сопровождаются коронарными венами, впадающими в венозный синус.

Особенности коронарного кровотока:

1) высокая интенсивность;

2) способность к экстракции кислорода из крови;

3) наличие большого количества анастомозов;

4) высокий тонус гладкомышечных клеток во время сокращения;

5) значительная величина кровяного давления.

В состоянии покоя каждые 100 г массы сердца потребляют 60 мл крови. При переходе в активное состояние интенсивность коронарного кровотока увеличивается (у тренированных людей повышается до 500 мл на 100 г, а у нетренированных – до 240 мл на 100 г).

В состоянии покоя и активности миокард экстрагирует до 70–75 % кислорода из крови, причем при увеличении потребности в кислороде способность его экстрагировать не увеличивается. Потребность восполняется за счет повышения интенсивности кровотока.

За счет наличия анастомозов артерии и вены соединяются между собой в обход капиллярам. Количество дополнительных сосудов зависит от двух причин: тренированности человека и фактора ишемии (недостатка кровоснабжения).

Коронарный кровоток характеризуется относительно высокой величиной кровяного давления. Это связано с тем, что коронарные сосуды начинаются от аорты. Значение этого заключается в том, что создаются условия для лучшего перехода кислорода и питательных веществ в межклеточное пространство.

Во время систолы к сердцу поступает до 15 % крови, а во время диастолы – до 85 %. Это связано с тем, что во время систолы сокращающиеся мышечные волокна сдавливают коронарные артерии. В результате происходит порционный выброс крови из сердца, что отражается на величине кровяного давления.

Регуляция коронарного кровотока осуществляется с помощью трех механизмов – местных, нервных, гуморальных.

Ауторегуляция может осуществляться двумя способами – метаболическим и миогенным. Метаболический способ регуляции связан с изменением просвета коронарных сосудов за счет веществ, образовавшихся в результате обмена. Расширение коронарных сосудов происходит под действием нескольких факторов:

1) недостаток кислорода приводит к повышению интенсивности кровотока;

2) избыток углекислого газа вызывает ускоренный отток метаболитов;

3) аденозил способствует расширению коронарный артерий и повышению кровотока.

Слабый сосудосуживающий эффект возникает при избытке пирувата и лактата.

Миогенный эффект Остроумова-Бейлиса заключается в том, что гладкомышечные клетки начинают реагировать сокращением на растяжение при повышении кровяного давления и расслабляются при понижении. В результате этого скорость кровотока не изменяется при значительных колебаниях величины кровяного давления.

Нервная регуляция коронарного кровотока осуществляется в основном симпатическим отделом вегетативной нервной системы и включается при повышении интенсивности коронарного кровотока. Это обусловлено следующими механизмами:

1) в коронарных сосудах преобладают 2-адренорецепторы, которые при взаимодействии с норадреналином понижают тонус гладкомышечных клеток, увеличивая просвет сосудов;

2) при активации симпатической нервной системы повышается содержание метаболитов в крови, что приводит к расширению коронарных сосудов, в результате наблюдается улучшенное кровоснабжение сердца кислородом и питательными веществами.

Гуморальная регуляция сходна с регуляцией всех видов сосудов.

7. Рефлекторные влияния на деятельность сердца

За двустороннюю связь сердца с ЦНС отвечают так называемые кардиальные рефлексы. В настоящее время выделяют три рефлекторных влияния – собственные, сопряженные, неспецифические.

Собственные кардиальные рефлексы возникают при возбуждении рецепторов, заложенных в сердце и в кровеносных сосудах, т. е. в собственных рецепторах сердечно-сосудистой системы. Они лежат в виде скоплений – рефлексогенных или рецептивных полей сердечно-сосудистой системы. В области рефлексогенных зон имеются механо– и хеморецепторы. Механорецепторы будут реагировать на изменение давления в сосудах, на растяжение, на изменение объема жидкости. Хеморецепторы реагируют на изменение химического состава крови. При нормальном состоянии эти рецепторы характеризуются постоянной электрической активностью. Так, при изменении давления или химического состава крови изменяется импульсация от этих рецепторов. Выделяют шесть видов собственных рефлексов:

1) рефлекс Бейнбриджа;

2) влияния с области каротидных синусов;

3) влияния с области дуги аорты;

4) влияния с коронарных сосудов;

5) влияния с легочных сосудов;

6) влияния с рецепторов перикарда.

Рефлекторные влияния с области каротидных синусов – ампулообразных расширений внутренней сонной артерии в месте бифуркации общей сонной артерии. При повышении давления увеличивается импульсация от этих рецепторов, импульсы передаются по волокнам IV пары черепно-мозговых нервов, и повышается активность IХ пары черепно-мозговых нервов. В результате возникает иррадиация возбуждения, и по волокнам блуждающих нервов оно передается в сердце, приводя к уменьшению силы и частоты сердечных сокращений.

При понижении давления в области каротидных синусов уменьшается импульсация в ЦНС, активность IV пары черепно-мозговых нервов понижается и наблюдается снижение активности ядер Х пары черепно-мозговых нервов. Наступает преобладающее влияние симпатических нервов, вызывающих повышение силы и частоты сердечных сокращений.

Значение рефлекторных влияний с области каротидных синусов заключается в обеспечении саморегуляции деятельности сердца.

При повышении давления рефлекторные влияния с дуги аорты приводят к увеличению импульсации по волокнам блуждающих нервов, что приводит к повышению активности ядер и уменьшению силы и частоты сердечных сокращений, и наоборот.

При повышении давления рефлекторные влияния с коронарных сосудов приводят к торможению работы сердца. В этом случае наблюдаются угнетение давления, глубины дыхания и изменение газового состава крови.

При перегрузке рецепторов с легочных сосудов наблюдается торможение работы сердца.

При растяжении перикарда или раздражении химическими веществами наблюдается торможение сердечной деятельности.

Таким образом, собственные кардиальные рефлексы саморегулируют величину кровяного давления и работы сердца.

К сопряженным кардиальным рефлексам относятся рефлекторные влияния от рецепторов, которые непосредственно не связаны с деятельностью сердца. Например, это рецепторы внутренних органов, глазного яблока, температурные и болевые рецепторы кожи и др. Их значение заключается в обеспечении приспособления работы сердца при изменяющихся условиях внешней и внутренней среды. Также они подготавливают сердечно-сосудистую систему к предстоящей перегрузке.

Неспецифические рефлексы в норме отсутствуют, но их можно наблюдать в процессе эксперимента.

Таким образом, рефлекторные влияния обеспечивают регуляцию сердечной деятельности в соответствии с потребностями организма.

8. Нервная регуляция деятельности сердца

Нервная регуляция характеризуется рядом особенностей.

1. Нервная система оказывает пусковое и корригирующее влияние на работу сердца, обеспечивая приспособление к потребностям организма.

2. Нервная система регулирует интенсивность обменных процессов.

Сердце иннервируется волокнами ЦНС – экстракардиальные механизмы и собственными волокнами – интракардиальные. В основе интракардиальных механизмов регуляции лежит метсимпатическая нервная система, содержащая все необходимые внутрисердечные образования для возникновения рефлекторной дуги и осуществления местной регуляции. Важную роль играют и волокна парасимпатического и симпатического отделов вегетативной нервной системы, обеспечивающих афферентную и эфферентную иннервацию. Эфферентные парасимпатические волокна представлены блуждающими нервами, телами I преганглионарных нейронов, находящихся на дне ромбовидной ямки продолговатого мозга. Их отростки заканчиваются интрамурально, и тела II постганглионарных нейронов располагаются в системе сердца. Блуждающие нервы обеспечивают иннервацию образований проводящей системы: правый – синоатриального узла, левый – атриовентрикулярного. Центры симпатической нервной системы лежат в боковых рогах спинного мозга на уровне I–V грудных сегментов. Она иннервирует миокард желудочков, миокард предсердий, проводящую систему.

При активации симпатической нервной системы изменяются сила и частота сердечных сокращений.

Центры ядер, иннервирующих сердце, находятся в состоянии постоянного умеренного возбуждения, за счет чего к сердцу поступают нервные импульсы. Тонус симпатического и парасимпатического отделов неодинаков. У взрослого человека преобладает тонус блуждающих нервов. Он поддерживается за счет импульсов, поступающих из ЦНС от рецепторов, заложенных в сосудистой системе. Они лежат в виде нервных скоплений рефлексогенных зон:

1) в области каротидного синуса;

2) в области дуги аорты;

3) в области коронарных сосудов.

При перерезке нервов, идущих от каротидных синусов в ЦНС, отмечается падение тонуса ядер, иннервирующих сердце.

Блуждающие и симпатические нервы являются антагонистами и оказывают на работу сердца пять видов влияния:

1) хронотропное;

2) батмотропное;

3) дромотропное;

4) инотропное;

5) тонотропное.

Парасимпатические нервы оказывают отрицательное влияние по всем пяти направлениям, а симпатические – наоборот.

Афферентные нервы сердца передают импульсы из ЦНС на окончания блуждающих нервов – первично-чувствующие хеморецепторы, реагирующие на изменение величины кровяного давления. Они расположены в миокарде предсердий и левого желудочка. При повышении давления увеличивается активность рецепторов, и возбуждение передается в продолговатый мозг, работа сердца рефлекторно изменяется. Однако в сердце обнаружены свободные нервные окончания, которые образуют субэндокардиальные сплетения. Они контролируют процессы тканевого дыхания. От этих рецепторов импульсы поступают к нейронам спинного мозга и обеспечивают возникновение боли при ишемии.

Таким образом, афферентную иннервацию сердца выполняют в основном волокна блуждающих нервов, связывающие сердце с ЦНС.

9. Гуморальная регуляция деятельности сердца

Факторы гуморальной регуляции делят на две группы:

1) вещества системного действия;

2) вещества местного действия.

К веществам системного действия относят электролиты и гормоны. Электролиты (ионы Ca) оказывают выраженное влияние на работу сердца (положительный инотропный эффект). При избытке Ca может произойти остановка сердца в момент систолы, так как нет полного расслабления. Ионы Na способны оказывать умеренное стимулирующее влияние на деятельность сердца. При повышении их концентрации наблюдается положительный батмотропный и дромотропный эффект. Ионы K в больших концентрациях оказывают тормозное влияние на работу сердца вследствие гиперполяризации. Однако небольшое повышение содержания K стимулирует коронарный кровоток. В настоящее время обнаружено, что при увеличении уровня K по сравнению с Ca наступает снижение работы сердца, и наоборот.

Гормон адреналин увеличивает силу и частоту сердечных сокращений, улучшает коронарный кровоток и повышает обменные процессы в миокарде.

Тироксин (гормон щитовидной железы) усиливает работу сердца, стимулирует обменные процессы, повышает чувствительность миокарда к адреналину.

Минералокортикоиды (альдостерон) стимулируют реабсорбцию Na и выведение K из организма.

Глюкагон повышает уровень глюкозы в крови за счет расщепления гликогена, приводя к положительному инотропному эффекту.

Половые гормоны в отношении к деятельности сердца являются синергистами и усиливают работу сердца.

Вещества местного действия действуют там, где вырабатываются. К ним относятся медиаторы. Например, ацетилхолин оказывает пять видов отрицательного влияния на деятельность сердца, а норадреналин – наоборот. Тканевые гормоны (кинины) – вещества, обладающие высокой биологической активностью, но они быстро разрушаются, поэтому и оказывают местное действие. К ним относятся брадикинин, калидин, умеренно стимулирующие сосуды. Однако при высоких концентрациях могут вызвать снижение работы сердца. Простагландины в зависимости от вида и концентрации способны оказывать различные влияния. Метаболиты, образующиеся в ходе обменных процессов, улучшают кровоток.

Таким образом, гуморальная регуляция обеспечивает более длительное приспособление деятельности сердца к потребностям организма.

10. Сосудистый тонус и его регуляция

Сосудистый тонус в зависимости от происхождения может быть миогенным и нервным.

Миогенный тонус возникает, когда некоторые гладкомышечные клетки сосудов начинают спонтанно генерировать нервный импульс. Возникающее возбуждение распространяется на другие клетки, и происходит сокращение. Тонус поддерживается за счет базального механизма. Разные сосуды обладают разным базальным тонусом: максимальный тонус наблюдается в коронарных сосудах, скелетных мышцах, почках, а минимальный – в коже и слизистой оболочке. Его значение заключается в том, что сосуды с высоким базальным тонусом на сильное раздражение отвечают расслаблением, а с низким – сокращением.

Нервный механизм возникает в гладкомышечных клетках сосудов под влиянием импульсов из ЦНС. За счет этого происходит еще большее увеличение базального тонуса. Такой суммарный тонус – тонус покоя, с частотой импульсов 1–3 в секунду.

Таким образом, сосудистая стенка находится в состоянии умеренного напряжения – сосудистого тонуса.

В настоящее время выделяют три механизма регуляции сосудистого тонуса – местный, нервный, гуморальный.

Ауторегуляция обеспечивает изменение тонуса под влиянием местного возбуждения. Этот механизм связан с расслаблением и проявляется расслаблением гладкомышечных клеток. Существует миогенная и метаболическая ауторегуляция.

Миогенная регуляция связана с изменением состояния гладких мышц – это эффект Остроумова-Бейлиса, направленный на поддержание на постоянном уровне объема крови, поступающей к органу.

Метаболическая регуляция обеспечивает изменение тонуса гладкомышечный клеток под влиянием веществ, необходимых для обменных процессов и метаболитов. Она вызвана в основном сосудорасширяющими факторами:

1) недостатком кислорода;

2) повышением содержания углекислого газа;

3) избытком К, АТФ, аденина, цАТФ.

Метаболическая регуляция наиболее выражена в коронарных сосудах, скелетных мышцах, легких, головном мозге. Таким образом, механизмы ауторегуляции настолько выражены, что в сосудах некоторых органах оказывают максимальное сопротивление суживающему влиянию ЦНС.

Нервная регуляция осуществляется под влиянием вегетативной нервной системы, осуществляющей действие как вазоконстриктора, так и вазодилататора. Симпатические нервы вызывают сосудосуживающий эффект в тех из них, в которых преобладают? 1 -адренорецепторы. Это кровеносные сосуды кожи, слизистых оболочек, желудочно-кишечного тракта. Импульсы по сосудосуживающим нервам поступают и в состоянии покоя (1–3 в секунду), и в состоянии активности (10–15 в секунду).

Сосудорасширяющие нервы могут быть различного происхождения:

1) парасимпатической природы;

2) симпатической природы;

3) аксон-рефлекс.

Парасимпатический отдел иннервирует сосуды языка, слюнных желез, мягкой мозговой оболочки, наружных половых органов. Медиатор ацетилхолин взаимодействует с М-холинорецепторами сосудистой стенки, что приводит к расширению.

Для симпатического отдела характерна иннервация коронарных сосудов, сосудов головного мозга, легких, скелетных мышц. Это связано с тем, что адренергические нервные окончания взаимодействуют с?-адренорецепторами, вызывая расширение сосудов.

Аксон-рефлекс возникает при раздражении рецепторов кожи, осуществляющихся в пределах аксона одной нервной клетки, вызывая расширение просвет сосуда в данной области.

Таким образом, нервная регуляция осуществляется симпатическим отделом, который может оказывать как расширяющее, так и суживающее действие. Парасимпатическая нервная система оказывает прямое расширяющее действие.

Гуморальная регуляция осуществляется за счет веществ местного и системного действия.

К веществам местного действия относятся ионы Ca, оказывающие суживающий эффект и участвующие в возникновении потенциала действия, кальциевых мостиков, в процессе сокращения мышц. Ионы К также вызывают расширение сосудов и в большом количестве приводят к гиперполяризации клеточной мембраны. Ионы Na при избытке могут вызвать повышение кровяного давления и задержку воды в организме, изменяя уровень выделения гормонов.

Гормоны оказывают следующее действие:

1) вазопрессин повышает тонус гладкомышечных клеток артерий и артериол, приводя к их сужению;

2) адреналин способен оказывать расширяющее и суживающее действие;

3) альдостерон задерживает Na в организме, влияя на сосуды, повышая чувствительность сосудистой стенки к действию ангиотензина;

4) тироксин стимулирует обменные процессы в гладкомышечных клетках, что приводит к сужению;

5) ренин вырабатывается клетками юкстагломерулярного аппарата и поступает в кровоток, действуя на белок ангиотензиноген, который превращается в ангиотензин II, ведущий к сужению сосудов;

6) атриопептиды оказывают расширяющее действие.

Метаболиты (например, углекислый газ, пировиноградная кислота, молочная кислота, ионы H) действуют как хеморецепторы сердечно-сосудистой системы, повышая скорость передачи импульсов в ЦНС, что приводит к рефлекторному сужению.

Вещества местного действия производят разнообразный эффект:

1) медиаторы симпатической нервной системы оказывают в основном суживающее действие, а парасимпатической – расширяющее;

2) биологически активные вещества: гистамин – расширяющее действие, а серотонин – суживающее;

3) кинины (брадикинин и калидин) вызывают расширяющее действие;

4) простагландины в основном расширяют просвет;

5) эндотелиальные ферменты расслабления (группа веществ, образуемых эндотелиоцитами) оказывают выраженный местный суживающий эффект.

Таким образом, на сосудистый тонус оказывают влияние местные, нервные и гуморальные механизмы.

11. Функциональная система, поддерживающая на постоянном уровне величину кровяного давления

Функциональная система, поддерживающая на постоянном уровне величину кровяного давления , – временная совокупность органов и тканей, формирующаяся при отклонении показателей с целью вернуть их к норме. Функциональная система состоит из четырех звеньев:

1) полезного приспособительного результата;

2) центральног звена;

3) исполнительного звена;

4) обратной связи.

Полезный приспособительный результат – нормальная величина кровяного давления, при изменении которого повышается импульсация от механорецепторов в ЦНС, в результате возникает возбуждение.

Центральное звено представлено сосудодвигательным центром. При возбуждении его нейронов импульсы конвергируют и сходят на одной группе нейронов – акцепторе результата действия. В этих клетках возникает эталон конечного результата, затем вырабатывается программа для его достижения.

Исполнительное звено включает внутренние органы:

1) сердце;

2) сосуды;

3) выделительные органы;

4) органы кроветворения и кроверазрушения;

5) депонирующие органы;

6) дыхательную систему (при изменении отрицательного внутриплеврального давления изменяется венозный возврат крови к сердцу);

7) железы внутренней секреции, которые выделяют адреналин, вазопрессин, ренин, альдостерон;

8) скелетные мышцы, изменяющие двигательную активность.

В результате деятельности исполнительного звена происходит восстановление величины кровяного давления. От механорецепторов сердечно-сосудистой системы исходит вторичный поток импульсов, несущих информацию об изменении величины кровяного давления в центральное звено. Эти импульсы поступают к нейронам акцептора результата действия, где происходит сопоставление полученного результата с эталоном.

Таким образом, при достижении нужного результата функциональная система распадается.

В настоящее время известно, что центральный и исполнительный механизмы функциональной системы включаются не одновременно, поэтому по времени включения выделяют :

1) кратковременный механизм;

2) промежуточный механизм;

3) длительный механизм.

Механизмы кратковременного действия включаются быстро, но продолжительность их действия несколько минут, максимум 1 ч. К ним относятся рефлекторные изменение работы сердца и тонуса кровеносных сосудов, т. е. первым включается нервный механизм.

Промежуточный механизм начинает действовать постепенно в течение нескольких часов. Этот механизм включает:

1) изменение транскапиллярного обмена;

2) понижение фильтрационного давления;

3) стимуляцию процесса реабсорбции;

4) релаксацию напряженных мышц сосудов после повышения их тонуса.

Механизмы длительного действия вызывают более значительные изменения функций различных органов и систем (например, изменение работы почек за счет изменения объема выделяющейся мочи). В результате происходит восстановление кровяного давления. Гормон альдостерон задерживает Na, который способствует реабсорбции воды и повышению чувствительности гладких мышц к сосудосуживающим факторам, в первую очередь к системе «ренин – ангиотензин».

Таким образом, при отклонении от нормы величины кровяного давления различные органы и ткани объединяются с целью восстановления показателей. При этом формируется три ряда заграждений:

1) уменьшение сосудистой регуляции и работы сердца;

2) уменьшение объема циркулирующей крови;

3) изменение уровня белка и форменных элементов.

12. Гистогематический барьер и его физиологическая роль

Гистогематический барьер – это барьер между кровью и тканью. Впервые были обнаружены советскими физиологами в 1929 г. Морфологическим субстратом гистогематического барьера является стенка капилляров, состоящая из:

1) фибриновой пленки;

2) эндотелия на базальной мембране;

3) слоя перицитов;

4) адвентиции.

В организме они выполняют две функции – защитную и регуляторную.

Защитная функция связана с защитой ткани от поступающих веществ (чужеродных клеток, антител, эндогенных веществ и др.).

Регуляторная функция заключается в обеспечении постоянного состава и свойств внутренней среды организма, проведении и передаче молекул гуморальной регуляции, удалении от клеток продуктов метаболизма.

Гистогематический барьер может быть между тканью и кровью и между кровью и жидкостью.

Основным фактором, влияющим на проницаемость гистогематического барьера, является проницаемость. Проницаемость – способность клеточной мембраны сосудистой стенки пропускать различные вещества. Она зависит от:

1) морфофункциональных особенностей;

2) деятельности ферментных систем;

3) механизмов нервной и гуморальной регуляции.

В плазме крови находятся ферменты, которые способны изменять проницаемость сосудистой стенки. В норме их активность невелика, но при патологии или под действием факторов повышается активность ферментов, что приводит к повышению проницаемости. Этими ферментами являются гиалуронидаза и плазмин. Нервная регуляция осуществляется по бессинаптическому принципу, так как медиатор с током жидкости поступает в стенки капилляров. Симпатический отдел вегетативной нервной системы уменьшает проницаемость, а парасимпатический – увеличивает.

Гуморальная регуляция осуществляется веществами, делящимися на две группы – повышающие проницаемость и понижающие проницаемость.

Повышающее влияние оказывают медиатор ацетилхолин, кинины, простагландины, гистамин, серотонин, метаболиты, обеспечивающие сдвиг pH в кислую среду.

Понижающее действие способны оказывать гепарин, норадреналин, ионы Ca.

Гистогематические барьеры являются основой для механизмов транскапиллярного обмена.

Таким образом, на работу гистогематических барьеров большое влияние оказывают строение сосудистой стенки капилляров, а также физиологические и физико-химические факторы.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.сайт/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

МУРМАНСКИЙ ГОСУДАРСТВЕННЫЙ ГУМАНИТАРНЫЙ УНИВЕРСИТЕТ

КАФЕДРА БЕЗОПАСНОСТИ ЖИЗНЕДЕЯТЕЛЬНОСТИ И ОСНОВ МЕДИЦИНСКИХ ЗНАНИЙ

Курсовая работа

По дисциплине: Анатомия и возрастная физиология

На тему: «Физиология сердечно-сосудистой системы »

Выполнила:

Студентка 1 курса

Факультета ППИ, Группы 1-ППО

Рогожина Л.В.

Проверил:

к. пед. н., доцент Сивков Е.П.

Мурманск 2011

План

Введение

1.1 Анатомическое строение сердца. Сердечный цикл. Значение клапанного аппарата

1.2 Основные физиологические свойства сердечной мышцы

1.3 Ритм сердца. Показатели сердечной деятельности

1.4 Внешние проявления деятельности сердца

1.5 Регуляция сердечной деятельности

II. Кровеносные сосуды

2.1 Типы кровеносных сосудов, особенности их строения

2.2 Давление крови в различных отделах сосудистого русла. Движение крови по сосудам

III. Возрастные особенности системы кровообращения. Гигиена сердечно-сосудистой системы

Заключение

Список использованной литературы

Введение

Из азов биологии мне известно, что все живые организмы состоят из клеток, клетки, в свою очередь, объединяются в ткани, ткани образуют различные органы. А анатомически однородные органы, обеспечивающие какие-либо сложные акты деятельности объединяются в физиологические системы. В организме человека выделяют системы: крови, кровообращения и лимфообращения, пищеварения, костную и мышечную, дыхания и выделения, желез внутренней секреции, или эндокринную, и нервную систему. Подробнее я рассмотрю строение и физиологию сердечно-сосудистой системы.

I. Сердце

1. 1 Анатомическое строение сердца. Сердечный цик л. Значение клапанного аппарата

Сердце человека - полый мышечный орган. Сплошной вертикальной перегородкой сердце делится на две половины: левую и правую. Вторая перегородка, идущая в горизонтальном направлении, образует в сердце четыре полости: верхние полости-предсердия, нижние-желудочки. Масса сердца новорожденных в среднем равна 20 г. Масса сердца взрослого человека составляет 0,425-0,570 кг. Длина сердца у взрослого человека достигает 12-15 см, поперечный размер 8-10 см, переднезадний 5-8 см. Масса и размеры сердца увеличиваются при некоторых заболеваниях (пороки сердца), а также у людей, длительное время занимающихся напряженным физическим трудом или спортом.

Стенка сердца состоит из трех слоев: внутреннего, среднего и наружного. Внутренний слой представлен эндотелиальной оболочкой (эндокард), которая выстилает внутреннюю поверхность сердца. Средний слой (миокард) состоит из поперечнополосатой мышцы. Мускулатура предсердий отделена от мускулатуры желудочков соединительнотканной перегородкой, которая состоит из плотных фиброзных волокон - фиброзное кольцо. Мышечный слой предсердий развит значительно слабее, чем мышечный слой желудочков, что связано с особенностями функций, которые выполняет каждый отдел сердца. Наружная поверхность сердца покрыта серозной оболочкой (эпикард), которая является внутренним листком околосердечной сумки-перикарда. Под серозной оболочкой расположены наиболее крупные коронарные артерии и вены, которые обеспечивают кровоснабжение тканей сердца, а также большое скопление нервных клеток и нервных волокон, иннервирующих сердце.

Перикард и его значение. Перикард (сердечная сорочка) окружает сердце как мешок и обеспечивает его свободное движение. Перикард состоит из двух листков: внутреннего (эпикард) и наружного, обращенного в сторону органов грудной клетки. Между листками перикарда имеется щель, заполненная серозной жидкостью. Жидкость уменьшает трение листков перикарда. Перикард ограничивает растяжение сердца наполняющей его кровью и является опорой для коронарных сосудов.

В сердце различают два вида клапанов-атриовентрикулярные (предсердно-желудочковые) и полулунные. Атриовентрикулярные клапаны располагаются между предсердиями и соответствующими желудочками. Левое предсердие от левого желудочка отделяет двустворчатый клапан. На границе между правым предсердием и правым желудочком находится трехстворчатый клапан. Края клапанов соединены с папиллярными мышцами желудочков тонкими и прочными сухожильными нитями, которые провисают в их полость.

Полулунные клапаны отделяют аорту от левого желудочка и легочный ствол от правого желудочка. Каждыйполулунный клапан состоит из трех створок (кармашки), в центре которых имеются утолщения - узелки. Эти узелки, прилегая, друг к другу, обеспечивают полную герметизацию при закрытии полулунных клапанов.

Сердечный цикл и его фазы . В деятельности сердца можно выделить две фазы: систола (сокращение) и диастола (расслабление). Систола предсердий слабее и короче систолы желудочков: в сердце человека она длится 0,1 с, а систола желудочков - 0,3 с. диастола предсердий занимает 0,7 с, а желудочков - 0,5 с. Общая пауза (одновременная диастола предсердий и желудочков) сердца длится 0,4 с. Весь сердечный цикл продолжается 0,8 с. Длительность различных фаз сердечного цикла зависит от частоты сердечных сокращений. При более частых сердечных сокращений деятельность каждой фазы уменьшается, особенно диастолы.

Я уже сказала о наличие клапанов в сердце. Немного поподробнее остановлюсь на значении клапанов в движении крови через камеры сердца.

Значение клапанного аппарата в движении крови через камеры сердца. Во время диастолы предсердий атриовентрикулярные клапаны открыты и кровь, поступающая из соответствующих сосудов, заполняет не только их полости, но и желудочки. Во время систолы предсердий желудочки полностью заполняются кровью. При этом исключается обратное движение крови в полые и легочные вены. Это связано с тем, что в первую очередь сокращается мускулатура предсердий, образующая устья вен. По мере наполнения полостей желудочков кровью створки атриовентрикулярных клапанов плотно смыкаются и отделяют полость предсердий от желудочков. В результате сокращения папиллярных мышц желудочков в момент их систолы сухожильные нити створок атриовентрикулярных клапанов натягиваются и не дают им вывернуться в сторону предсердий. К концу систолы желудочков давление в них становится больше давления в аорте и легочной стволе.

Это способствует открытию полулунных клапанов, и кровь из желудочков поступает в соответствующие сосуды. Во время диастолы желудочков давление в них резко падает, что создает условия для обратного движения крови в сторону желудочков. При этом кровь заполняет кармашки полулунных клапанов и обусловливает их смыкание.

Таким образом, открытие и закрытие клапанов сердца связано с изменением величины давления в полостях сердца.

Теперь я хочу рассказать об основных физиологических свойствах сердечной мышцы.

1. 2 Основные физиологические свойства сердечной мышцы

Сердечная мышца, как и скелетная, обладает возбудимостью, способностью проводить возбуждение и сократимостью.

Возбудимость сердечной мышцы. Сердечная мышца менее возбудима, чем скелетная. Для возникновения возбуждения в сердечной мышце необходимо применить более сильный раздражитель, чем для скелетной. Установлено, что величина реакции сердечной мышцы не зависит от силы наносимых раздражений (электрических, механических, химических и т. д.). Сердечная мышца максимально сокращается и на пороговое, и на более сильное по величине раздражение.

Проводимость. Волны возбуждения проводятся по волокнам сердечной мышцы и так называемой специальной ткани сердца с неодинаковой скоростью. Возбуждение по волокнам мышц предсердий распространяется со скоростью 0,8-1,0 м/с, по волокнам мышц желудочков- 0,8-0,9 м/с, по специальной ткани сердца-2,0-4,2 м/с.

Сократимость. Сократимость сердечной мышцы имеет свои особенности. Первыми сокращаются мышцы предсердии, затем-папиллярные мышцы и субэндокардиальный слой мышц желудочков. В дальнейшем сокращение охватывает и внутренний слой желудочков, обеспечивая тем самым движение крови из полостей желудочков в аорту и легочный ствол.

Физиологическими особенностями сердечной мышцы является удлиненный рефрактерный период и автоматия. Теперь о них поподробнее.

Рефрактерный период. В сердце в отличие от других возбудимых тканей имеется значительно выраженный и удлиненный рефрактерный период. Он характеризуется резким снижением возбудимости ткани в течение ее активности. Выделяют абсолютный и относительный рефрактерный период (р.п.). Во время абсолютного р.п. какой бы силы не наносили раздражения на сердечную мышцу, она не отвечает на него возбуждением и сокращением. Он соответствует по времени систоле и началу диастолы предсердий и желудочков. Во время относительного р.п. возбудимость сердечной мышцы постепенно возвращается к исходному уровню. В этот период мышца может ответить на раздражитель сильнее порогового. Он обнаруживается во время диастолы предсердий и желудочков.

Сокращение миокарда продолжается около 0.3 с, по времени примерно совпадает с рефрактерной фазой. Следовательно, в период сокращения сердце неспособно реагировать на раздражители. Благодаря выраженному р.п.р., который длится больше чем период систолы, сердечная мышца неспособна к титаническому (длительному) сокращению и совершает свою работу по типу одиночного мышечного сокращения.

Автоматия сердца. Вне организма при определенных условиях сердце способно сокращаться и расслабляться, сохраняя правильный ритм. Следовательно, причина сокращений изолированного сердца лежит в нем самом. Способность сердца ритмически сокращаться под влиянием импульсов, возникающих в нем самом, носит название автоматии.

В сердце различают рабочую мускулатуру, представленную поперечнополосатой мышцей, и атипическую, или специальную, ткань, в которой возникает и проводится возбуждение.

У человека атипическая ткань состоит из:

Синоаурикулярного узла, располагающегося на задней стенке правого предсердия у места впадения полых вен;

Атриовентрикулярного (предсердно-желудочкового) узла находящегося в правом предсердии вблизи перегородки между предсердиями и желудочками;

Пучка Гиса (предсердно-желудочковый пучок), отходящего от атриовентрикулярного узла одним стволом.

Пучок Гиса, пройдя через перегородку между предсердиями и желудочками, делится на две ножки, идущие к правому и левому желудочкам. Заканчивается пучок Гиса в толще мышц волокнами Пуркинье. Пучок Гиса - это единственный мышечный мостик, соединяющий предсердия с желудочками.

Синоаурикулярный узел является ведущим в деятельности сердца (водитель ритма), в нем возникают импульсы, определяющие частоту сокращений сердца. В норме атриовентрикулярный узел и пучок Гиса являются только передатчиками возбуждения из ведущего узла к сердечной мышце. Однако им присуща способность к автоматии, только выражена она в меньшей степени, чем у синоаурикулярного узла, и проявляется лишь в условиях патологии.

Атипическая ткань состоит из малодифференцированных мышечных волокон. В области синоаурикулярного узла обнаружено значительное количество нервных клеток, нервных волокон и их окончаний, которые здесь образуют нервную сеть. К узлам атипической ткани подходят нервные волокна от блуждающих и симпатических нервов.

1. 3 Ритм сердца. Показатели сердечной деятельности

Ритм сердца и факторы, влияющие на него. Ритм сердца, т. е. количество сокращений в 1 мин, зависит главным образом от функционального состояния блуждающих и симпатических нервов. При возбуждении симпатических нервов частота сердечных сокращений возрастает. Это явление носит название тахикардии. При возбуждении блуждающих нервов частота сердечных сокращений уменьшается - брадикардия.

На ритм сердца влияет также состояние коры головного мозга: при усилении торможения ритм сердца замедляется, при усилении возбудительного процесса стимулируется.

Ритм сердца может изменяться под влиянием гуморальных воздействий, в частности температуры крови, притекающей к сердцу. В опытах было показано, что местное раздражение теплом области правого предсердия (локализация ведущего узла) ведет к учащению ритма сердца при охлаждении этой области сердца наблюдается противоположный эффект. Местное раздражение теплом или холодом других участков сердца не отражается на частоте сердечных сокращений. Однако оно может изменить скорость проведения возбуждений по проводящей системе сердца и отразиться на силе сердёчных сокращений.

Частота сердечных сокращений у здорового человека находится в зависимости от возраста. Эти данные представлены в таблице.

Показатели сердечной деятельности. Показателями работы сердца являются систолический и минутный объем сердца.

Систолический, или ударный, объем сердца-это количество крови, которое сердце выбрасывает в соответствующие сосуды при каждом сокращении. Величина систолического объема зависит от размеров сердца, состояния миокарда и организма. У взрослого здорового человека при относительном покое систолический объем каждого желудочка составляет приблизительно 70-80 мл. Таким образом, при сокращении желудочков в артериальную систему поступает 120-160 мл крови.

Минутный объем сердца-это количество крови, которое сердце выбрасывает в легочный ствол и аорту за 1 мин. Минутный объем сердца - это произведение величины систолического объема на частоту сердечных сокращений в 1 мин. В среднем минутный объем составляет 3-5 л.

Систолический и минутный объем сердца характеризует деятельность всего аппарата кровообращения.

1. 4 Внешние проявления деятельности сердца

Как же можно определить работу сердца без специальной аппаратуры?

Есть данные по которым врач судит о работе сердца по внешним проявлениям его деятельности, к которым относятся верхушечный толчок, сердечные тоны. Подробнее об этих данных:

Верхушечный толчок. Сердце во время систолы желудочков совершает вращательное движение, поворачиваясь слева направо. Верхушка сердца поднимается и надавливает на грудную клетку в области пятого межреберного промежутка. Во время систолы сердце становится очень плотным, поэтому надавливание верхушки сердца на межреберный промежуток можно видеть (выбухание, выпячивание), особенно у худощавых субъектов. Верхушечный толчок можно прощупать (пальпировать) и тем самым определить его границы и силу.

Сердечные тоны - это звуковые явления, возникающие в работающем сердце. Различают два тона: I - систолический и II - диастолический.

Систолический тон. В происхождении этого тона принимают участие главным образом атриовентрикулярные клапаны. Во время систолы желудочков атриовентрикулярные клапаны закрываются, и колебания их створок и прикрепленных к ним сухожильных нитей обусловливают I тон. Кроме того, в происхождении I тона принимают участие звуковые явления, которые возникают при сокращении мышц желудочков. По своим звуковым особенностям I тон протяжный и низкий.

Диастолический тон возникает в начале диастолы желудочков во время протодиастолической фазы, когда происходит закрытие полулунных клапанов. Колебание створок клапанов при этом является источником звуковых явлений. По звуковой характеристике II тон короткий и высокий.

Также о работе сердца можно судить по электрическим явлениям, возникающим в нем. Их называют биопотенциалами сердца и получают с помощью электрокардиографа. Они носят название электрокардиограммы.

1. 5 Регул яция сердечной деятельности

Любая деятельность органа, ткани, клетки регулируется нервно-гуморальными путями. Деятельность сердца не является исключением. Поподробнее о каждом из этих путей я расскажу ниже.

Нервная регуляция деятельности сердца. Влияние нервной системы на деятельность сердца осуществляется за счет блуждающих и симпатических нервов. Эти нервы относятся к вегетативной нервной системе. Блуждающие нервы идут к сердцу от ядер, расположенных в продолговатом мозге на дне IV желудочка. Симпатические нервы подходят к сердцу от ядер, локализованных в боковых рогах спинного мозга (I-V грудные сегменты). Блуждающие и симпатические нервы оканчиваются в синоаурикулярном и атриовентрикулярном узлах, также в мускулатуре сердца. В результате при возбуждении этих нервов наблюдаются изменения в автоматии синоаурикулярного узла, скорости проведения возбуждения по проводящей системе сердца, в интенсивности сердечных сокращений.

Слабые раздражения блуждающих нервов приводят к замедлению ритма сердца, сильные - обусловливают остановку сердечных сокращений. После прекращения раздражения блуждающих нервов деятельность сердца может вновь восстановиться.

При раздражении симпатических нервов происходит учащение ритма сердца и увеличивается сила сердечных сокращений, повышается возбудимость и тонус сердечной мышцы, а также скорость проведения возбуждения.

Тонус центров сердечных нервов. Центры сердечной деятельности, представленные ядрами блуждающих и симпатических нервов, всегда находятся в состоянии тонуса, который может быть усилен или ослаблен в зависимости от условий существования организма.

Тонус центров сердечных нервов зависит от афферентных влияний, идущих от механо- и хеморецепторов сердца и сосудов, внутренних органов, рецепторов кожи и слизистых оболочек. На тонус центров сердечных нервов оказывают воздействие и гуморальные факторы.

Есть и определенные особенности в работе сердечных нервов. Одна из низ проявляется в том, что при повышении возбудимости нейронов блуждающих нервов снижается возбудимость ядер симпатических нервов. Такие функционально взаимосвязанные отношения между центрами сердечных нервов способствуют лучшему приспособлению деятельности сердца к условиям существования организма.

Рефлекторные влияния на деятельность сердца. Этивлияния я условно разделила на: осуществляемые с самого сердца; осуществляемые через вегетативную нервную систему. Теперь поподробнее о каждых:

Рефлекторные влияния на деятельность сердца осуществляются с самого сердца. Внутрисердечные рефлекторные влияния проявляются в изменениях силы сердечных сокращений. Так, установлено, что растяжение миокарда одного из отделов сердца приводит к изменению силы сокращения миокарда другого его отдела, гемодинамически с ним разобщенного. Например, при растяжении миокарда правого предсердия наблюдается усиление работы левого желудочка. Этот эффект может быть результатом только рефлекторных внутрисердечных влияний.

Обширные связи сердца с различными отделами нервной системы создают условия для разнообразных рефлекторных воздействий на деятельность сердца, осуществляемых через вегетативную нервную систему.

В стенках сосудов располагаются многочисленные рецепторы, обладающие способностью возбуждаться при изменении величины кровяного давления и химического состава крови. Особенно много рецепторов имеется в области дуги аорты и каротидных синусов (небольшое расширение, выпячивание стенки сосуда на внутренней сонной артерии). Их еще называют сосудистые рефлексогенные зоны.

При уменьшении артериального давления происходит возбуждение этих рецепторов, и импульсы от них поступают в продолговатый мозг к ядрам блуждающих нервов. Под влиянием нервных импульсов снижается возбудимость нейронов ядер блуждающих нервов, что усиливает влияние симпатических нервов на сердце (об этой особенности я уже говорила выше). В результате влияния симпатических нервов ритм сердца и сила сердечных сокращений увеличиваются, сосуды суживаются, что является одной из причин нормализации артериального давления.

При увеличении артериального давления нервные импульсы, возникшие в рецепторах области дуги аорты и каротидных синусов, усиливают активность нейронов ядер блуждающих нервов. Обнаруживается влияние блуждающих нервов на сердце, замедляется ритм сердца, ослабляются сердечные сокращения, сосуды расширяются, что также является одной из причин восстановления исходного уровня артериального давления.

Таким образом, рефлекторные влияния на деятельность сердца, осуществляемые с рецепторов области дуги аорты и каротидных синусов, следует отнести к механизмам саморегуляции, проявляющимся в ответ на изменение величины артериального давления.

Возбуждение рецепторов внутренних органов, если оно достаточно сильное, может изменить деятельность сердца.

Естественно необходимо отметить влияние коры головного мозга на работу сердца. Влияние коры головного мозга на деятельность сердца. Кора головного мозга регулирует и корригирует деятельность сердца через блуждающие и симпатические нервы. Доказательством влияния коры головного мозга на деятельность сердца является возможность образования условных рефлексов. Условные рефлексы на сердце достаточно легко образуются у человека, а также у животных.

Можно привести пример опыта с собакой. У собаки образовывали условный рефлекс на сердце, используя в качестве условного сигнала вспышку света или звуковое раздражение. Безусловным раздражителем являлись фармакологические вещества (например, морфин), типично изменяющие деятельность сердца. Сдвиги в работе сердца контролировали путем регистрации ЭКГ. Оказалось, что после 20-30 инъекций морфина комплекс раздражения, связанных с введением этого препарата (вспышка света, лабораторная обстановка и т. д.), приводил к условно-рефлекторной брадикардии. Замедление ритма сердца наблюдалось и тогда, когда животному вместо морфина вводили изотонический раствор хлорида натрия.

У человека различные эмоциональные состояния (волнение, страх, гнев, злость, радость) сопровождаются соответствующими изменениями в деятельности сердца. Это также свидетельствует о влиянии коры головного мозга на работу сердца.

Гуморальные влияния на деятельность сердца. Гуморальные влияния на деятельность сердца реализуются гормонами, некоторыми электролитами и другими высокоактивными веществами, поступающими в кровь и являющимися продуктами жизнедеятельности многих органов и тканей организма.

Этих веществ очень много, я рассмотрю некоторые из них:

Ацетилхолин и норадреналин - медиаторы нервной системы - оказывают выраженное влияние на работу сердца. Действие ацетилхолина неотделимо от функций парасимпатических нервов, так как он синтезируется в их окончаниях. Ацетилхолин уменьшает возбудимость сердечной мышцы и силу ее сокращений.

Важное значение для регуляции деятельности сердца имеют катехоламины, к которым относятся норадреналин (медиатор) и адреналин (гормон). Катехоламины оказывают на сердце влияние, аналогичное воздействию симпатических нервов. Катехоламины стимулируют обменные процессы в сердце, повышают расход энергии и тем самым увеличивают потребность миокарда в кислороде. Адреналин одновременно вызывает расширение коронарных сосудов, что способствует улучшению питания сердца.

В регуляции деятельности сердца особо важную роль играют гормоны коры надпочечников и щитовидной железы. Гормоны коры надпочечников - минералокортикоиды - увеличивают силу сердечных сокращений миокарда. Гормон щитовидной железы - тироксин - повышает обменные процессы в сердце и увеличивает его чувствительность к воздействию симпатических нервов.

Выше я отмечала, что система кровообращения состоит из сердца и кровеносных сосудов. Строение, функции и регуляцию работы сердца я рассмотрела. Теперь стоит остановиться на кровеносных сосудах.

II . Кровеносные сосуды

2. 1 Типы кровеносных сосудов, особенности их строения

сердце сосуд кровообращение

В сосудистой системе различают несколько видов сосудов: магистральные, резистивные, истинные капилляры, емкостные и шунтирующие.

Магистральные сосуды - это наиболее крупные артерии, в которых ритмически пульсирующий, изменчивый кровоток превращается в более равномерный и плавный. Кровь в них движется от сердца. Стенки этих сосудов содержат мало гладкомышечных элементов и много эластических волокон.

Резистивные сосуды (сосуды сопротивления) включают в себя прекапиллярные (мелкие артерии, артериолы) и посткапиллярные (венулы и мелкие вены) сосуды сопротивления.

Истинные капилляры (обменные сосуды) - важнейший отдел сердечно-сосудистой системы. Через тонкие стенки капилляров происходит обмен между кровью и тканями (транскапиллярный обмен). Стенки капилляров не содержат гладкомышечных элементов, они образованы одним слоем клеток, снаружи которого находится тонкая соединительнотканная мембрана.

Емкостные сосуды-венозный отдел сердечно сосудистой системы. Их стенки тоньше и мягче стенок артерий, также имеют в просвете сосудов клапаны. Кровь в них движется от органов и тканей к сердцу. Емкостными эти сосуды называют потому, что они вмещают примерно 70-80% всей крови.

Шунтирующие сосуды - артериовенозные анастомозы, обеспечивающие прямую связь между мелкими артериями и венами в обход капиллярного ложа.

2. 2 Давление крови в разл ичных отделах сосудистого русла. Движение крови по сосудам

Давление крови в различных отделах сосудистого русла неодинаково: в артериальной системе оно выше, в венозной ниже.

Кровяное давление-давление крови на стенки кровеносных сосудов. Нормальное кровяное давление необходимо для циркуляции крови и надлежащего снабжения кровью органов и тканей, для образования тканевой жидкости в капиллярах, а также для осуществления процессов секреции и экскреции.

Величина кровяного давления зависит от трех основных факторов: частоты и силы сердечных сокращений; величины периферического сопротивления, т. е. тонуса стенок сосудов, главным образом артериол и капилляров; объема циркулирующей крови.

Различают артериальное, венозное и капиллярное давление крови.

Артериальное кровяное давление. Величина артериального давления у здорового человека является довольно постоянной, Однако она всегда подвергается небольшим колебаниям в зависимости от фаз деятельности сердца и дыхания.

Различают систолическое, диастолическое, пульсовое и среднее артериальное давление.

Систолическое (максимальное) давление отражает состояние миокарда левого желудочка сердца. Его величина 100-120 мм рт. ст.

Диастолическое (минимальное) давление характеризует степень тонуса артериальных стенок. Оно равняется 60-80 мм рт. ст.

Пульсовое давление - это разность между систолическим и диастолическим давлением. Пульсовое давление необходимо для открытия полулунных клапанов во время систолы желудочков. В норме пульсовое давление составляет 35-55 мм рт. ст. Если систолическое давление станет равным диастолическому - движение крови будет невозможным и наступит смерть.

Среднее артериальное давление равняется сумме диастолического и 1/3 пульсового давления.

На величину артериального давления оказывают влияние различные факторы: возраст, время суток, состояние организма, центральной нервной системы и т.д.

С возрастом максимальное давление увеличивается в большей степени, чем минимальное.

В течение суток наблюдается колебание величины давления: днем оно выше, чем ночью.

Значительное повышение максимального артериального давления может наблюдаться при тяжелой физической нагрузке, во время спортивных состязаний и др. После прекращения работы или окончания соревнований артериальное давление быстро возвращается к исходным показателям.

Повышение артериального давления называется гипертонией. Понижение артериального давления называется гипотонией. Гипотония может наступить при отравлении наркотиками, при сильных травмах, обширных ожогах, больших кровопотерях.

Артериальный пульс. Это периодические расширения и удлинения стенок артерий, обусловленные поступлением крови в аорту при систоле левого желудочка. Пульс характеризуется рядом качеств, которые определяются путем пальпации чаще всего лучевой артерии в нижней трети предплечья, где она расположена наиболее поверхностно;

Пальпаторно определяют следующие качества пульса: частоту-количество ударов в 1 мин, ритмичность - правильное чередование пульсовых ударов, наполнение - степень изменения объема артерии, устанавливаемая по силе пульсового удара, напряжение-характеризуется силой, которую надо приложить, чтобы сдавить артерию до полного исчезновения пульса.

Кровообращение в капиллярах. Эти сосуды пролегают в межклеточных пространствах, тесно примыкая к клеткам органов и тканей организма. Общее количество капилляров огромно. Суммарная длина всех капилляров человека составляет около 100 000 км, т. е. нить, которой можно было бы 3 раза опоясать земной шар по экватору.

Скорость кровотока в капиллярах невелика и составляет 0,5-1 мм/с. Таким образом, каждая частица крови находится в капилляре примерно 1 с. Небольшая толщина этого слоя и тесный контакт его с клетками органов и тканей, а также непрерывная смена крови в капиллярах обеспечивают возможность обмена веществ между кровью и межклеточной жидкостью.

Различают два вида функционирующих капилляров. Одни из них образуют кратчайший путь между артериолами и венулами (магистральные капилляры). Другие представляют собой боковые ответвления от первых; они отходят от артериального конца магистральных капилляров и впадают в их венозный конец. Эти боковые ответвления образуют капиллярные сети. Магистральные капилляры играют важную роль в распределении крови в капиллярных сетях.

В каждом органе кровь течет лишь в «дежурных» капиллярах. Часть же капилляров выключена из кровообращения. В период интенсивной деятельности органов (например, при сокращении мышц или секреторной активности желез), когда обмен веществ в них усиливается, количество функционирующих капилляров значительно возрастает. В то же время в капиллярах начинает циркулировать кровь, богатая эритроцитами - переносчиками кислорода.

Регулирование капиллярного кровообращения нервной системой, влияние на него физиологически активных веществ - гормонов и метаболитов осуществляются посредством воздействия на артерии и артериолы. Их сужение или расширение изменяет количество функционирующих капилляров, распределение крови в ветвящейся капиллярной сети, изменяет состав крови, протекающей по капиллярам, т. е. соотношение эритроцитов и плазмы.

Величина давления в капиллярах тесно связана с состоянием органа (покой и активность) и теми функциями, которые он выполняет.

Артериовенозные анастомозы . В некоторых участках тела, например в коже, легких и почках, имеются непосредственные соединения артериол и вен - артериовенозные анастомозы. Это наиболее короткий путь между артериолами и венами. В обычных условиях анастомозы закрыты, и кровь проходит через капиллярную сеть. Если анастомозы открываются, то часть крови может поступать в вены, минуя капилляры.

Таким образом, артериовенозные анастомозы играют роль шунтов, регулирующих капиллярное кровообращение. Примером этому является изменение капиллярного кровообращения в коже при повышении (свыше 35 °С) или понижении (ниже 15 °С) внешней температуры. Анастомозы в коже открываются и устанавливается ток крови из артериол непосредственно в вены, что играет большую роль в процессах терморегуляции.

Движение крови в венах. Кровь из микроциркуляторного русла (венулы, мелкие вены) поступает в венозную систему. В венах давление крови низкое. Если в начале артериального русла давление крови равно 140 мм рт. ст., то в венулах оно составляет, 10-15 мм рт. ст. В конечной части венозного русла давление крови приближается к нулю и даже может быть ниже атмосферного давления.

Движению крови по венам способствует ряд факторов. А именно: работа сердца, клапанный аппарат вен, сокращение скелетных мышц, присасывающаяся функция грудной клетки.

Работа сердца создает разность давлений крови в артериальной системе и правом предсердии. Это обеспечивает венозный возврат крови к сердцу. Наличие в венах клапанов способствует движению крови в одном направлении - к сердцу. Чередование сокращений и расслабление мышц является важным фактором, способствующим движению крови по венам. При сокращении мышц тонкие стенки вен сжимаются, и кровь продвигается по направлению к сердцу. Расслабление скелетных мышц способствует поступлению крови из артериальной системы в вены. Такое нагнетающее действие мышц получило название мышечного насоса, который является помощником основного насоса - сердца. Вполне понятно, что движение крови по венам облегчается во время ходьбы, когда ритмически работает мышечный насос нижних конечностей.

Отрицательное внутригрудное давление, особенно в фазу вдоха, способствует венозному возврату крови к сердцу. Внутригрудное отрицательное давление вызывает расширение венозных сосудов области шеи и грудной полости, обладающих тонкими и податливыми стенками. Давление в венах понижается, что облегчает движение крови по направлению к сердцу.

В мелких и средних венах отсутствуют пульсовые колебания давления крови. В крупных венах вблизи сердца отмечаются пульсовые колебания - венный пульс, имеющий иное происхождение, чем артериальный пульс. Он обусловлен затруднением притока крови из вен в сердце во время систолы предсердий и желудочков. При систоле этих отделов сердца давление внутри вен повышается и происходит колебания их стенок.

II I. Возрастные осо бенности системы кровообращения. Гигиена сердечно-сосудистой системы

Организм человека имеет свое индивидуальное развитие с момента оплодотворения до естественного окончания жизни. Этот период называют онтогенезом. В нем выделяют два самостоятельных этапа: пренатальный (с момента зачатия до момента рождения) и постнатальный (с момента рождения до смерти человека). В каждом из этих этапах есть свои особенности в строении и функционировании системы кровообращения. Рассмотрю некоторые из них:

Возрастные особенности в пренатальном этапе. Формирование сердца эмбриона начинается со 2-ой недели пренатального развития, а его развитие в общих чертах заканчивается к концу 3-ей недели. Кровообращение плода имеет свои особенности, связанные, прежде всего с тем, что до рождения кислород поступает в организм плод через плаценту и так называемую пупочную вену. Пупочная вена разветвляется на два сосуда, один питает печень, другой соединяется с нижней полой веной. В результате в нижней полой вене происходит смешение крови, богатой кислородом, с кровью, прошедшей через печень и содержащей продукты обмена. Через нижнюю полую вену кровь попадает в правое предсердие. Далее кровь проходит в правый желудочек и затем выталкивается в легочную артерию; меньшая часть крови течет в легкие, а большая часть через боталлов проток попадает в аорту. Наличие боталлова протока, соединяющего артерию с аортой, является второй специфической особенностью в кровообращении плода. В результате соединения легочной артерии и аорты оба желудочка сердца нагнетают кровь в большой круг кровообращения. Кровь с продуктами обмена возвращается в материнский организм через пупочные артерии и плаценту.

Таким образом, циркуляция в организме плода смешанной крови, его связь через плаценту с системой кровообращения матери и наличие боталлова протока является основными особенностями кровообращения плода.

Возрастные особенности в постнатальном этапе . У новорожденного ребенка связь с материнским организмом прекращается и его собственная система кровообращения берет на себя все необходимые функции. Боталлов проток теряет свое функциональное значение и вскоре зарастает соединительной тканью. У детей относительная масса сердца и общий просвет сосудов больше, чем у взрослых, что в значительной степени облегчает процессы кровообращения.

Есть ли закономерности в росте сердца? Можно отметить, что рост сердца находится в тесной связи с общим ростом тела. Наиболее интенсивный рост сердца наблюдается в первые годы развития и в конце подросткового периода.

Также изменяется форма и положение сердца в грудной клетке. У новорожденных сердце шаровидной формы и расположено значительно выше, чем у взрослого. Эти различия ликвидируются только к 10-летнему возрасту.

Функциональные различия в сердечно-сосудистой системе детей и подростков сохраняются до 12 лет. Частота сердечного ритма у детей больше, чем у взрослых. ЧСС у детей более подвержена влиянию внешних воздействий: физических упражнений, эмоционального напряжения и т.д. Кровяное давление у детей ниже, чем у взрослых. Ударный объем у детей значительно меньше, чем у взрослых. С возрастом увеличивается минутный объем крови, что обеспечивает сердцу адаптационные возможности к физическим нагрузкам.

В периоды полового созревания, происходящие в организме бурные процессы роста и развития влияют, на внутренние органы и, особенно, на сердечно-сосудитстую систему. В этом возрасте отмечается несоответствие размера сердца диаметру кровеносных сосудов. При быстром росте сердца кровеносные сосуды растут медленнее, просвет их недостаточно широк, и в связи с этим сердце подростка несет дополнительную нагрузку, проталкивая кровь по узким сосудам. По этой же причине у подростка может быть временное нарушение питания сердечной мышцы, повышенная утомляемость, легкая отдышка, неприятные ощущения в области сердца.

Другой особенностью сердечно-сосудистой системы подростка является то, что сердце у подростка очень быстро растет, а развитие нервного аппарата, регулирующего работу сердца, не успевает за ним. В результате у подростков иногда наблюдаются сердцебиение, неправильный ритм сердца и т.п. Все перечисленные изменения временны и возникают в связи с особенностью роста и развития, а не в результате болезни.

Гигиена ССС. Для нормального развития сердца и его деятельности чрезвычайно существенно исключить чрезмерные физические и психические напряжения, нарушающие нормальный темп работы сердца, а также обеспечить его тренировку путем рациональных и доступных для детей физических упражнений.

Постепенная тренировка сердечной деятельности обеспечивает совершенствование сократительных и эластических свойств мышечных волокон сердца.

Тренировка сердечно-сосудистой деятельности достигается повседневно проводимыми физическими упражнениями, спортивными занятиями и умеренным физическим трудом, особенно в тех случаях, когда они проводятся на свежем воздухе.

Гигиена органов кровообращения у детей предъявляет определенные требования к их одежде. Тесная одежда и узкие платья сдавливает грудную клетку. Узкие воротнички сдавливают кровеносные сосуды шеи, что отражается на кровообращении в мозге. Тугие пояса сдавливают кровеносные сосуды полости живота и тем самым затрудняют кровообращение в органах кровообращения. Тесная обувь неблагоприятно отражается на кровообращении в нижних конечностях.

Заключение

Клетки многоклеточных организмов теряют непосредственный контакт с внешней средой и находятся в окружающей их жидкой среде - межклеточной, или тканевой жидкости, откуда черпают необходимые вещества и куда выделяют продукты обмена.

Состав тканевой жидкости постоянно обновляется благодаря тому, что эта жидкость находится в тесном контакте с непрерывно движущейся кровью, которая осуществляет ряд ей присущих функций. Из крови в тканевую жидкость проникают кислород и другие необходимые клеткам вещества; в кровь, оттекающую от тканей, поступают продукты обмена клеток.

Многообразные функции крови могут осуществляться только при ее непрерывном движении в сосудах, т.е. при наличии кровообращения. Кровь движется по сосудам благодаря периодическим сокращениям сердца. При остановке сердца наступает смерть, потому что прекращается доставка тканям кислорода и питательных веществ, а также освобождение тканей от продуктов метаболизма.

Таким образом, система кровообращения - одна из важнейших систем организма.

С писок использованной литературы

1. С.А. Георгиева и др. Физиология. - М.: Медицина, 1981 г.

2. Е.Б. Бабский, Г.И. Косицкий, А.Б. Коган и др. Физиология человека. - М.: Медицина, 1984 г.

3. Ю.А. Ермолаев Возрастная физиология. - М.: Высш. Шк., 1985 г.

4. С.Е. Советов, Б.И. Волков и др. Школьная гигиена. - М.: Просвещение, 1967 г.

Размещено на сайт

Подобные документы

    История развития физиологии кровообращения. Общая характеристика сердечно-сосудистой системы. Круги кровообращения, кровяное давление, лимфатическая и сосудистая системы. Особенности кровообращения в венах. Сердечная деятельность, роль сердечных клапанов.

    презентация , добавлен 25.11.2014

    Строение и основные функции сердца. Движение крови по сосудам, круги и механизм кровообращения. Строение сердечно-сосудистой системы, возрастные особенности ее реакции на физические нагрузки. Профилактика сердечно-сосудистых заболеваний у школьников.

    реферат , добавлен 18.11.2014

    Строение сердца, система автоматизма сердца. Основное значение сердечно-сосудистой системы. Течение крови через сердце только в одном направлении. Главные кровеносные сосуды. Возбуждение, возникшее в синоатриальном узле. Регуляция деятельности сердца.

    презентация , добавлен 25.10.2015

    Общее понятие и состав сердечно-сосудистой системы. Описание кровеносных сосудов: артерий, вен и капилляров. Основные функции большого и малого кругов кровообращения. Строение камер предсердий и желудочков. Рассмотрение принципов работы клапанов сердца.

    реферат , добавлен 16.11.2011

    Строение сердца: эндокард, миокард и эпикард. Клапаны сердца и крупных кровеносных сосудов. Топография и физиология сердца. Цикл сердечной деятельности. Причины образования тонов сердца. Систолический и минутный объемы сердца. Свойства сердечной мышцы.

    учебное пособие , добавлен 24.03.2010

    Строение сердца и функции сердечно-сосудистой системы человека. Движение крови по венам, большой и малый круг кровообращения. Строение и функционирование лимфатической системы. Изменения кровотока различных областей организма при мышечной работе.

    презентация , добавлен 20.04.2011

    Классификация различных регуляторных механизмов сердечно-сосудистой системы. Влияние автономной (вегетативной) нервной системы на сердце. Гуморальная регуляция сердца. Стимуляция адренорецепторов катехоламинами. Факторы, влияющие на тонус сосудов.

    презентация , добавлен 08.01.2014

    Изучение строения сердца, особенностей его роста в детском возрасте. Неравномерности формирования отделов. Функции кровеносных сосудов. Артерии и микроциркуляторное русло. Вены большого круга кровообращения. Регуляция функций сердечно-сосудистой системы.

    презентация , добавлен 24.10.2013

    Особенности размера и формы сердца человека. Строение правого и левого желудочков. Положение сердца у детей. Нервная регуляция сердечно-сосудистой системы и состояние кровеносных сосудов в детском возрасте. Врожденный порок сердца у новорожденных.

    презентация , добавлен 04.12.2015

    Основные варианты и аномалии (пороки) развития сердца, крупных артерий и вен. Влияние неблагоприятных факторов внешней среды на развитие сердечно-сосудистой системы. Строение и функции III и IV и VI пары черепно-мозговых нервов. Ветви, зоны иннервации.

Масса крови перемещается по замкну­той сосудистой системе, состоящей из боль­шого и малого кругов кровообращения, в строгом соответствии с основными физи­ческими принципами, в том числе с прин­ципом неразрывности потока. Согласно этому принципу разрыв потока при вне­запных травмах и ранениях, сопровожда­ющихся нарушением целостности сосудис­того русла, приводит к потере как час­ти объема циркулирующей крови, так и большого количества кинетической энер­гии сердечного сокращения. В нормально функционирующей системе кровообраще­ния согласно принципу неразрывности потока через любое поперечное сечение замкнутой сосудистой системы в единицу времени перемещается один и тот же объем крови.

Дальнейшее изучение функций крово­обращения как в эксперименте, так и в кли­нике, привело к пониманию того, что кро­вообращение наряду с дыханием относится к числу наиболее важных жизнеобес­печивающих систем, или к так называе­мым «витальным» функциям организма, прекращение функционирования которых приводит к смерти в течение нескольких секунд или минут. Между общим состоя­нием организма больного и состоянием кровообращения существует прямая зави­симость, поэтому состояние гемодинами­ки является одним из определяющих кри­териев тяжести заболевания. Развитие любого тяжелого заболевания всегда со­провождается изменениями функции кро­вообращения, проявляющимися либо в его патологической активации (напряжение), либо в депрессии той или иной степени выраженности (недостаточность, несосто­ятельность). Первичное поражение цир­куляции характерно для шоков различ­ной этиологии.

Оценка и поддержание адекватности гемодинамики являются важнейшим ком­понентом деятельности врача при проведении анестезии, интенсивной терапии и реанимации.

Система кровообращения осуществля­ет транспортную связь между органами и тканями организма. Кровообращение вы­полняет множество взаимосвязанных функ­ций и обуславливает интенсивность сопря­женных процессов, в свою очередь, влия­ющих на кровообращение. Все реализуе­мые кровообращением функции характе­ризуются биологической и физиологичес­кой специфичностью и ориентированы на осуществление феномена переноса масс, клеток и молекул, выполняющих защит­ные, пластические, энергетические и инфор­мационные задачи. В наиболее общей фор­ме функции кровообращения сводятся к массопереносу по сосудистой системе и к массообмену с внутренней и внешней сре­дой. Это явление, наиболее четко просле­живаемое на примере газообмена, лежит в основе роста, развития и гибкого обеспе­чения различных режимов функциональ­ной активности организма, объединяя его в динамическое целое.


К основным функциям кровообращения относятся:

1. Транспорт кислорода из легких к тка­ням и углекислого газа из тканей к легким.

2. Доставка пластических и энергетичес­ких субстратов к местам их потребления.

3. Перенос продуктов метаболизма к органам, где происходит их дальнейшее превращение и экскреция.

4. Осуществление гуморальной взаимо­связи между органами и системами.

Кроме этого, кровь играет роль буфера между внешней и внутренней средой и является наиболее активным звеном в гид­рообмене организма.

Система кровообращения образована сердцем и сосудами. Оттекающая от тка­ней венозная кровь поступает в правое предсердие, а оттуда - в правый желудо­чек сердца. При сокращении последнего кровь нагнетается в легочную артерию. Протекая через легкие, кровь подвергает­ся полной или частичной эквилибрации с альвеолярным газом, в результате чего она отдает избыток углекислого газа и насы­щается кислородом. Система легочных сосудов (легочные артерии, капилляры и вены) образует малый (легочный) круг кровообращения . Артериализированная кровь из легких по легочным венам по­ступает в левое предсердие, а оттуда - в левый желудочек. При его сокращении кровь нагнетается в аорту и далее - в артерии, артериолы и капилляры всех ор­ганов и тканей, откуда по венулам и ве­нам оттекает в правое предсердие. Систе­ма перечисленных сосудов образует боль­шой круг кровообращения. Любой элемен­тарный объем циркулирующей крови пос­ледовательно проходит все перечисленные отделы системы кровообращения (за ис­ключением порций крови, подвергающих­ся физиологическому либо патологичес­кому шунтированию).

Исходя из целей клинической физио­логии, кровообращение целесообразно рас­сматривать как систему, состоящую из сле­дующих функциональных отделов:

1. Сердце (сердечный насос) - глав­ный двигатель циркуляции.

2. Сосуды-буферы, или артерии, выпол­няющие преимущественно пассивную транспортную функцию между насосом и системой микроциркуляции.

3. Сосуды-емкости, или вены, выполня­ющие транспортную функцию возврата крови к сердцу. Это более активная, чем артерии, часть системы кровообращения, поскольку вены способны изменять свой объем в 200 раз, активно участвуя в регу­ляции венозного возврата и циркулирую­щего объема крови.

4. Сосуды распределения (сопротивле­ния) - артериолы, регулирующие кро­воток через капилляры и являющиеся глав­ным физиологическим средством регио­нарного распределения сердечного выбро­са, а также венулы.

5. Сосуды обмена - капилляры, интег­рирующие систему кровообращения в об­щее движение жидкости и химических ве­ществ в организме.

6. Сосуды-шунты - артерио-венозные анастомозы, регулирующие периферичес­кое сопротивление при спазме артериол, сокращающем кровоток через капилляры.

Три первых отдела кровообращения (сердце, сосуды-буферы и сосуды-емко­сти) представляют собой систему макроциркуляции, остальные - образуют сис­тему микроциркуляции.

В зависимости от уровня давления кро­ви выделяют следующие анатомо-функциональные фрагменты системы крово­обращения:

1. Система высокого давления (от ле­вого желудочка до капилляров большого круга) кровообращения.

2. Система низкого давления (от капил­ляров большого круга до левого предсер­дия включительно).

Хотя сердечно-сосудистая система яв­ляется целостным морфофункциональным образованием, для понимания процессов циркуляции целесообразно рассматривать основные аспекты деятельности сердца, сосудистого аппарата и регуляторных ме­ханизмов по отдельности.

Сердце

Этот орган массой около 300 г снабжа­ет кровью «идеального человека» массой 70 кг в течение примерно 70 лет. В покое каждый желудочек сердца взрослого че­ловека выбрасывает 5 -5,5 л крови в ми­нуту; следовательно, за 70 лет производи­тельность обоих желудочков составляет приблизительно 400 млн. л, даже если че­ловек находится в состоянии покоя.

Обменные потребности организма зави­сят от его функционального состояния (покой, физическая активность, тяжелые заболевания, сопровождающиеся гипер­метаболическим синдромом). Во время тяжелой нагрузки минутный объем может возрастать до 25 л и более в результате увеличения силы и частоты сердечных со­кращений. Некоторые из этих изменений обусловлены нервными и гуморальными воздействиями на миокард и рецепторный аппарат сердца, другие являются физичес­ким следствием воздействия «растяги­вающей силы» венозного возврата на со­кратительную силу волокон сердечной мышцы.

Процессы, происходящие в сердце, ус­ловно разделяют на электрохимические (автоматия, возбудимость, проводимость) и механические, обеспечивающие сократи­тельную активность миокарда.

Электрохимическая деятельность серд­ца. Сокращения сердца происходят вслед­ствие периодически возникающих в сер­дечной мышце процессов возбуждения. Сердечная мышца - миокард - обладает рядом свойств, обеспечивающих его непре­рывную ритмическую деятельность, - автоматией, возбудимостью, проводимостью и сократимостью.

Возбуждение в сердце возникает перио­дически под влиянием процессов, проте­кающих в нем. Это явление получило на­звание автоматии. Способностью к автоматии обладают определенные участки сердца, состоящие из особой мышечной тка­ни. Эта специфическая мускулатура об­разует в сердце проводящую систему, со­стоящую из синусового (синусно-предсердного, синоатриального) узла - главного водителя ритма сердца, расположенного в стенке предсердия около устьев полых вен, и предсердно-желудочкового (атриовентрикулярного) узла, находящегося в ниж­ней трети правого предсердия и межже­лудочковой перегородки. От атриовентрикулярного узла берет начало предсердно-желудочковый пучок (пучок Гиса), про­бодающий предсердно-желудочковую пе­регородку и разделяющийся на левую и правую ножки, следующие в межжелудоч­ковую перегородку. В области верхушки сердца ножки предсердно-желудочкового пучка загибаются вверх и переходят в сеть сердечных проводящих миоцитов (волок­на Пуркинье), погруженных в сократи­тельный миокард желудочков. В физио­логических условиях клетки миокарда на­ходятся в состоянии ритмической актив­ности (возбуждения), что обеспечивается эффективной работой ионных насосов этих клеток.

Особенностью проводящей системы серд­ца является способность каждой клетки самостоятельно генерировать возбужде­ние. В обычных условиях автоматия всех расположенных ниже участков проводя­щей системы подавляется более частыми импульсами, поступающими из синусно-предсердного узла. В случае поражения этого узла (генерирующего импульсы с час­тотой 60 - 80 ударов в минуту) водителем ритма может стать предсердно-желудочковый узел, обеспечивающий частоту 40 - 50 ударов в минуту, а если оказывается выключенным и этот узел - волокна пуч­ка Гиса (частота 30 - 40 ударов в мину­ту). При выходе из строя и этого водите­ля ритма процесс возбуждения может воз­никнуть в волокнах Пуркинье с очень ред­ким ритмом - примерно 20/мин.

Возникнув в синусовом узле, возбуж­дение распространяется на предсердие, до­стигая атриовентрикулярного узла, где бла­годаря небольшой толщине его мышечных волокон и особому способу их соедине­ния возникает некоторая задержка про­ведения возбуждения. Вследствие этого возбуждение достигает предсердно-желу-дочкового пучка и волокон Пуркинье лишь после того, как мускулатура предсер­дий успевает сократиться и перекачать кровь из предсердий в желудочки. Таким образом, атриовентрикулярная задержка обеспечивает необходимую последова­тельность сокращений предсердий и же­лудочков.

Наличие проводящей системы обеспечи­вает ряд важных физиологических функ­ций сердца: 1) ритмическую генерацию им­пульсов; 2) необходимую последователь­ность (координацию) сокращений предсер­дий и желудочков; 3) синхронное вовле­чение в процесс сокращения клеток мио­карда желудочков.

Как экстракардиальные влияния, так и факторы, непосредственно поражающие структуры сердца, могут нарушать эти со­пряженные процессы и приводить к раз­витию различных патологий сердечного ритма.

Механическая деятельность сердца. Сердце нагнетает кровь в сосудистую сис­тему благодаря периодическому сокра­щению мышечных клеток, составляющих миокард предсердий и желудочков. Со­кращение миокарда вызывает повышение давления крови и изгнание ее из камер сердца. Вследствие наличия общих слоев миокарда у обоих предсердий и обоих желудочков возбуждение одновременно достигает их клеток и сокращение обоих предсердий, а затем и обоих желудоч­ков осуществляется практически син­хронно. Сокращение предсердий начинается в области устьев полых вен, в результате чего устья сжимаются. Поэтому кровь может двигаться через предсердно-желудочковые клапаны только в одном направ­лении - в желудочки. В момент диасто­лы желудочков клапаны раскрываются и пропускают кровь из предсердий в желу­дочки. В левом желудочке находится дву­створчатый, или митральный, клапан, в правом - трехстворчатый клапан. Объем желудочков постепенно возрастает до тех пор, пока давление в них не превысит дав­ление в предсердии и клапан не закроет­ся. В этот момент объем в желудочке пред­ставляет собой конечный диастолический объем. В устьях аорты и легочной арте­рии имеются полулунные клапаны, состо­ящие из трех лепестков. При сокращении желудочков кровь устремляется в сторо­ну предсердий и створки предсердно-желудочковых клапанов захлопываются, в это время полулунные клапаны тоже пока остаются закрытыми. Начало сокращения желудочка при полностью закрытых кла­панах, превращающих желудочек во вре­менно изолированную камеру, соответству­ет фазе изометрического сокращения.

Повышение давления в желудочках при их изометрическом сокращении происхо­дит до тех пор, пока оно не превысит дав­ление в крупных сосудах. Следствием этого является изгнание крови из правого желудочка в легочную артерию и из лево­го желудочка в аорту. При систоле желу­дочков лепестки клапана под давлением крови прижимаются к стенкам сосудов, и она беспрепятственно изгоняется из же­лудочков. Во время диастолы давление в желудочках становится ниже, чем в круп­ных сосудах, кровь устремляется из аорты и легочной артерии в направлении желу­дочков и захлопывает полулунные клапа­ны. Вследствие падения давления в каме­рах сердца во время диастолы, давление в венозной (приносящей) системе начинает превышать давление в предсердиях, куда кровь притекает из вен.

Наполнение сердца кровью обусловле­но рядом причин. Первая - наличие ос­татка движущей силы, вызванной сокра­щением сердца. Среднее давление крови в венах большого круга - 7 мм рт. ст., а в полостях сердца во время диастолы стре­мится к нулю. Таким образом, градиент давления составляет всего около 7 мм рт. ст. Это надо учитывать во время хирургичес­ких вмешательств - любое случайное сдавливание полых вен может полностью прекратить доступ крови к сердцу.

Вторая причина притока крови к серд­цу - сокращение скелетных мышц и на­блюдающееся при этом сдавливание вен конечностей и туловища. В венах имеют­ся клапаны, пропускающие кровь только в одном направлении - к сердцу. Эта так называемая венозная помпа обеспечивает значительное увеличение притока веноз­ной крови к сердцу и сердечного выброса при физической работе.

Третья причина увеличения венозного возврата - присасывающий эффект кро­ви грудной клеткой, которая представляет собой герметически закрытую полость с отрицательным давлением. В момент вдо­ха эта полость увеличивается, органы, рас­положенные в ней (в частности, полые ве­ны), растягиваются, и давление в полых венах и предсердиях становится отрица­тельным. Определенное значение имеет также присасывающая сила расслабляю­щихся подобно резиновой груше желудоч­ков.

Под сердечным циклом понимают пе­риод, состоящий из одного сокращения (систола) и одного расслабления (диас­тола).

Сокращение сердца начинается с сис­толы предсердий, длящейся 0,1 с. При этом давление в предсердиях повышается до 5 - 8 мм рт. ст. Систола желудочков про­должается около 0,33 с и состоит из не­скольких фаз. Фаза асинхронного сокра­щения миокарда длится от начала сокра­щения до закрытия атриовентрикулярных клапанов (0,05 с). Фаза изометрического сокращения миокарда начинается с захло­пывания атриовентрикулярных клапанов и заканчивается открытием полулунных (0,05 с).

Период изгнания составляет около 0,25 с. За это время часть крови, содержащейся в желудочках, изгоняется в крупные сосу­ды. Остаточный систолический объем зависит от величины сопротивления работы сердца и от силы его сокращения.

Во время диастолы давление в желу­дочках падает, кровь из аорты и легочной артерии устремляется обратно и захлопы­вает полулунные клапаны, затем кровь притекает в предсердия.

Особенностью кровоснабжения миокар­да является то, что кровоток в нем осуще­ствляется в фазу диастолы. В миокарде имеются две системы сосудов. Снабжение левого желудочка происходит по сосудам, отходящим от коронарных артерий под острым углом и проходящим по поверх­ности миокарда, их ветви снабжают кровью 2/3 наружной поверхности миокарда. Другая система сосудов проходит под ту­пым углом, прободает всю толщу миокар­да и осуществляет кровоснабжение 1/3 внутренней поверхности миокарда, развет­вляясь эндокардиально. В период диа­столы кровоснабжение этих сосудов зави­сит от величины внутрисердечного давле­ния и давления извне на сосуды. На суб-эндокардиальную сеть влияет среднее дифференциальное диастолическое давле­ние. Чем оно выше, тем хуже наполнение сосудов, т. е. нарушается коронарный кро­воток. У больных с дилатацией чаще воз­никают очаги некроза в субэндокардиальном слое, чем интрамурально.

Правый желудочек тоже имеет две сис­темы сосудов: первая проходит через всю толщу миокарда; вторая образует субэндокардиальное сплетение (1/3). Сосуды перекрывают друг друга в субэндокардиальном слое, поэтому инфарктов в об­ласти правого желудочка практически не бывает. Дилатированное сердце всегда имеет плохой коронарный кровоток, но потребляет кислорода больше, чем нор­мальное.

К системе кровообращения относятся сердце и сосуды - кровеносные и лимфатические. Основное значение системы кровообращения состоит в снабжении кровью органов и тканей.

Сердце представляет собой биологический насос, благодаря работе которого кровь движется по замкнутой системе сосудов. В организме человека имеется 2 круга кровообращения.

Большой круг кровообращения начинается аортой, которая отходит от левого желудочка, и заканчивается сосудами, впадающими в правое предсердие. Аорта дает начало крупным, средним и мелким артериям. Артерии переходят в артериолы, которые заканчиваются капиллярами. Капилляры широкой сетью пронизывают все органы и ткани организма. В капиллярах кровь отдает тканям кислород и питательные вещества, а из них в кровь поступают продукты обмена веществ, в том числе и углекислый газ. Капилляры переходят в венулы, кровь из которых попадает в мелкие, средние и крупные вены. Кровь от верхней части туловища поступает в верхнюю полую вену, от нижней - в нижнюю полую вену. Обе эти вены впадают в правое предсердие, где заканчивается большой круг кровообращения.

Малый круг кровообращения (легочный) начинается легочным стволом, который отходит от правого желудочка и несет в легкие венозную кровь. Легочный ствол разветвляется на две ветви, идущие к левому и правому легкому. В легких легочные артерии делятся на более мелкие артерии, артериолы и капилляры. В капиллярах кровь отдает углекислый газ и обогащается кислородом. Легочные капилляры переходят в венулы, которые затем образуют вены. По четырем легочным венам артериальная кровь поступает в левое предсердие.

Сердце.

Сердце человека - полый мышечный орган. Сплошной вертикальной перегородкой сердце делится на левую и правую половины. Горизонтальная перегородка вместе с вертикальной делит сердце на четыре камеры. Верхние камеры - предсердия, нижние - желудочки.

Стенка сердца состоит из трех слоев. Внутренний слой представлен эндотелиальной оболочкой (эндокард , выстилает внутреннюю поверхность сердца). Средний слой (миокард ) состоит из поперечнополосатой мышцы. Наружная поверхность сердца покрыта серозной оболочкой (эпикард ), являющейся внутренним листком околосердечной сумки - перикарда. Перикард (сердечная сорочка) окружает сердце, как мешок, и обеспечивает его свободное движение.

Клапаны сердца. Левое предсердие от левого желудочка отделяет двустворчатый клапан . На границе между правым предсердием и правым желудочком находится трехстворчатый клапан . Клапан аорты отделяет ее от левого желудочка, а клапан легочного ствола отделяет его от правого желудочка.

При сокращении предсердий (систола ) кровь из них поступает в желудочки. При сокращении желудочков кровь с силой выбрасывается в аорту и легочный ствол. Расслабление (диастола ) предсердий и желудочков способствует наполнению полостей сердца кровью.

Значение клапанного аппарата. Во время диастолы предсердий предсердно-желудочковые клапаны открыты, кровь, поступающая из соответствующих сосудов, заполняет не только их полости, но и желудочки. Во время систолы предсердий желудочки полностью заполняются кровью. При этом исключается возврат крови в полые и легочные вены. Это связано с тем, что в первую очередь сокращается мускулатура предсердий, образующая устья вен. По мере наполнения полостей желудочков кровью створки предсердно-желудочковых клапанов плотно смыкаются и отделяют полость предсердий от желудочков. В результате сокращения сосочковых мышц желудочков в момент их систолы сухожильные нити створок предсердно-желудочковых клапанов натягиваются и не дают им вывернуться в сторону предсердий. К концу систолы желудочков давление в них становится больше давления в аорте и легочном стволе. Это способствует открытию полулунных клапанов аорты и легочного ствола , и кровь из желудочков поступает в соответствующие сосуды.

Таким образом, открытие и закрытие клапанов сердца связано с изменением величины давления в полостях сердца. Значение же клапанного аппарата состоит в том, что он обеспечивает движение крови в полостях сердца в одном направлении .

Основные физиологические свойства сердечной мышцы.

Возбудимость. Сердечная мышца менее возбудима, чем скелетная. Реакция сердечной мышцы не зависит от силы наносимых раздражений. Сердечная мышца максимально сокращается и на пороговое и на более сильное по величине раздражение.

Проводимость. Возбуждение по волокнам сердечной мышцы распространяется с меньшей скоростью, чем по волокнам скелетной мышцы. Возбуждение по волокнам мышц предсердий распространяется со скоростью 0,8-1,0 м/с, по волокнам мышц желудочков - 0,8-0,9 м/с, по проводящей системе сердца - 2,0-4,2 м/с.

Сократимость. Сократимость сердечной мышцы имеет свои особенности. Первыми сокращаются мышцы предсердий, затем - сосочковые мышцы и субэндокардиальный слой мышц желудочков. В дальнейшем сокращение охватывает и внутренний слой желудочков, обеспечивая движение крови из полостей желудочков в аорту и легочный ствол.

К физиологическим особенностям сердечной мышцы относятся удлиненный рефрактерный период и автоматизм

Рефрактерный период. Сердце имеет значительно выраженный и удлиненный рефрактерный период. Он характеризуется резким снижением возбудимости ткани в период ее активности. Благодаря выраженному рефрактерному периоду, который длится дольше, чем период систолы (0,1-0,3с), сердечная мышца не способна к тетаническому (длительному) сокращению и совершает свою работу по типу одиночного мышечного сокращения.

Автоматизм. Вне организма при определенных условиях сердце способно сокращаться и расслабляться, сохраняя правильный ритм. Следовательно, причина сокращений изолированного сердца лежит в нем самом. Способность сердца ритмически сокращаться под влиянием импульсов, возникающих в нем самом, носит название автоматизма.

Проводящая система сердца.

В сердце различают рабочую мускулатуру, представленную поперечнополосатой мышцей, и атипическую, или специальную, ткань, в которой возникает и проводится возбуждение.

У человека атипическая ткань состоит из:

синусно-предсердного узла , располагающегося на задней стенке правого предсердия у места впадения верхней полой вены;

предсердно-желудочкового узла (атриовентрикулярный узел), находящегося в стенке правого предсердия вблизи перегородки между предсердиями и желудочками;

предсердно-желудочкового пучка (пучок Гиса), отходящего от предсердно-желудочкового узла одним стволом. Пучок Гиса, пройдя через перегородку между предсердиями и желудочками, делится на две ножки, идущие к правому и левому желудочкам. Заканчивается пучок Гиса в толще мышц волокнами Пуркинье.

Синусно-предсердный узел является ведущим в деятельности сердца (водитель ритма), в нем возникают импульсы, определяющие частоту и ритм сокращений сердца. В норме предсердно-желудочковый узел и пучок Гиса являются только передатчиками возбуждений из ведущего узла к сердечной мышце. Однако способность к автоматии присуща предсердно-желудочковому узлу и пучку Гиса, только выражается она в меньшей степени и проявляется лишь при патологии. Автоматизм предсердно-желудочкового соединения проявляется лишь в тех случаях, когда к нему не поступают импульсы от синусно-предсердного узла .

Атипическая ткань состоит из малодифференцированных мышечных волокон. К узлам атипической ткани подходят нервные волокна от блуждающих и симпатических нервов.

Сердечный цикл и его фазы.

В деятельности сердца наблюдаются две фазы: систола (сокращение) и диастола (расслабление). Систола предсердий слабее и короче систолы желудочков. В сердце человека она длится 0,1-0,16 с. Систола желудочков - 0,5-0,56 с. Общая пауза (одновременная диастола предсердий и желудочков) сердца длится 0,4 с. В течение этого периода сердце отдыхает. Весь сердечный цикл продолжается 0,8-0,86 с.

Систола предсердий обеспечивает поступление крови в желудочки. Затем предсердия переходят в фазу диастолы, которая продолжается в течение всей систолы желудочков. Во время диастолы предсердия заполняются кровью.

Показатели сердечной деятельности.

Ударный, или систолический, объем сердца - количество крови, выбрасываемое желудочком сердца в соответствующие сосуды при каждом сокращении. У взрослого здорового человека при относительном покое систолический объем каждого желудочка составляет приблизительно 70-80 мл . Таким образом, при сокращении желудочков в артериальную систему поступает 140-160 мл крови.

Минутный объем - количество крови, выбрасываемое желудочком сердца за 1 мин. Минутный объем сердца - это произведение величины ударного объема на частоту сердечных сокращений в 1 мин. В среднем минутный объем составляет 3-5 л/мин . Минутный объем сердца может увеличиваться за счет увеличения ударного объема и частоты сердечных сокращений.

Законы сердечной деятельности.

Закон Старлинга - закон сердечного волокна. Формулируется так: чем больше растянуто мышечное волокно, тем сильнее оно сокращается. Следовательно, сила сердечных сокращений зависит от исходной длины мышечных волокон перед началом их сокращений.

Рефлекс Бейнбриджа (закон сердечного ритма). Это висцеро-висцеральный рефлекс: увеличение частоты и силы сердечных сокращений при повышении давления в устьях полых вен. Проявление этого рефлекса связано с возбуждением механорецепторов, расположенных в правом предсердии в области впадения полых вен. Механорецепторы, представленные чувствительными нервными окончаниями блуждающих нервов, реагируют на повышение давления крови, возвращающейся к сердцу, например, при мышечной работе. Импульсы от механорецепторов по блуждающим нервам идут в продолговатый мозг к центру блуждающих нервов, в результате этого снижается активность центра блуждающих нервов и усиливаются воздействия симпатических нервов на деятельность сердца, что и обусловливает учащение сердечных сокращений.

Основные методы исследования сердечной деятельности. Врач судит о работе сердца по внешним проявлениям его деятельности, к которым относятся: верхушечный толчок, сердечные тоны и электрические явления, возникающие в работающем сердце.

Верхушечный толчок. Во время систолы желудочков верхушка сердца поднимается и надавливает на грудную клетку в области пятого межреберного промежутка. Во время систолы сердце становится очень плотным. Поэтому надавливание верхушки сердца на межреберный промежуток можно видеть (выбухание, выпячивание), особенно у худощавых субъектов. Верхушечный толчок можно прощупать (пальпировать) и тем самым определить его границы и силу. Сердечные тоны. Это звуковые явления, возникающие в работающем сердце. Различают два тона: I - систолический и II - диастолический.

В происхождении систолического тона принимают участие главным образом предсердно-желудочковые клапаны. Во время систолы желудочков эти клапаны закрываются и колебания их створок и прикрепленных к ним сухожильных нитей обусловливают появление I тона. Кроме того, в происхождении I тона принимают участие звуковые явления, которые возникают при сокращении мышц желудочков. По своим звуковым качествам первый тон протяжный и низкий. Диастолический тон возникает в начале диастолы желудочков, когда происходит закрытие полулунных заслонок клапанов аорты и легочного ствола. Колебание створок клапанов при этом является источником звуковых явлений. По звуковой характеристике II тон короткий и высокий. Тоны сердца можно определить в любом участке грудной клетки. Однако имеются места наилучшего их прослушивания: I тон лучше выражен в области верхушечного толчка и у основания мечевидного отростка грудины; II - во втором межреберье слева от грудины и справа от нее. Тоны сердца прослушиваются при помощи стетоскопа, фонендоскопа или непосредственно ухом.

Электрокардиограмма.

В работающем сердце создаются условия для возникновения электрического тока. Во время систолы предсердия становятся электроотрицательными по отношению к желудочкам, находящимся в это время в фазе диастолы. Таким образом, при работе сердца возникает разность потенциалов. Биопотенциалы сердца, записанные с помощью электрокардиографа, носят название электрокардиограммы.

Для регистрации биотоков сердца пользуются стандартными отведениями , для которых выбираются участки на поверхности тела, дающие наибольшую разность потенциалов. Применяют три классических стандартных отведения, при которых электроды укрепляют:I - на внутренней поверхности предплечий обеих рук;II - на правой руке и в области икроножной мышцы левой ноги; III - на левых конечностях. Используют также и грудные отведения.

Нормальная ЭКГ состоит из ряда зубцов и интервалов между ними. При анализе ЭКГ учитывают высоту, ширину, направление, форму зубцов, а также продолжительность зубцов и интервалов между ними, отражает скорость проведения импульсов в сердце. ЭКГ имеет три направленных вверх (положительных) зубца - Р, R,T и два отрицательных зубца, вершины которых обращены вниз, - Q и S.

Зубец Р - характеризует возникновение и распространение возбуждения в предсердиях.

Зубец Q - отражает возбуждение межжелудочковой перегородки

Зубец R - соответствует периоду охвата возбуждением обоих желудочков

Зубец S - характеризует завершение распространения возбуждения в желудочках.

Зубец Т - отражает процесс реполяризации в желудочках. Высота его характеризует состояние обменных процессов, происходящих в сердечной мышце .